import torch.nn as nn from isegm.model.modifiers import LRMult from isegm.utils.serialization import serialize from .is_model import ISModel from .modeling.basic_blocks import SepConvHead from .modeling.deeplab_v3 import DeepLabV3Plus class DeeplabModel(ISModel): @serialize def __init__( self, backbone="resnet50", deeplab_ch=256, aspp_dropout=0.5, backbone_norm_layer=None, backbone_lr_mult=0.1, norm_layer=nn.BatchNorm2d, **kwargs ): super().__init__(norm_layer=norm_layer, **kwargs) self.feature_extractor = DeepLabV3Plus( backbone=backbone, ch=deeplab_ch, project_dropout=aspp_dropout, norm_layer=norm_layer, backbone_norm_layer=backbone_norm_layer, ) self.feature_extractor.backbone.apply(LRMult(backbone_lr_mult)) self.head = SepConvHead( 1, in_channels=deeplab_ch, mid_channels=deeplab_ch // 2, num_layers=2, norm_layer=norm_layer, ) def backbone_forward(self, image, coord_features=None): backbone_features = self.feature_extractor(image, coord_features) return {"instances": self.head(backbone_features[0])}