mle10-glg-demo / app.py
curtpond's picture
Add new code to app.py that helps with feature matching.
4a02fcc
raw
history blame
1.89 kB
# Imports
import gradio as gr
from sklearn.linear_model import LogisticRegression
import pickle5 as pickle
import re
import string
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
# file name
lr_filename = 'lr_021223.pkl'
# Load model from pickle file
model = pickle.load(open(lr_filename, 'rb'))
# Process input text, including removing stopwords, converting to lowercase, and removing punctuation
stop = stopwords.words('english')
def process_text(text):
text = [word for word in text.split() if word not in stop]
text = str(text).lower()
text = re.sub(
f"[{re.escape(string.punctuation)}]", " ", text
)
text = " ".join(text.split())
return text
# Vectorize input text
vectorizer = CountVectorizer()
def vectorize_text(text):
text = process_text(text)
text = vectorizer.fit_transform([text])
return text
# Valid input for the model so number of features match
def create_valid_input(text):
text = vectorize_text(text)
text = text.toarray()
text = text.reshape(1, -1)
return text
# Prediction function
def predict(text):
text = vectorize_text(text)
prediction = model.predict(text)
return prediction
# Define interface
demo = gr.Interface(fn=predict,
title="Text Classification Demo",
description="This is a demo of a text classification model using Logistic Regression.",
inputs=gr.Textbox(lines=10, placeholder='Input text here...', label="Input Text"),
outputs=gr.Textbox(label="Predicted Label: Other: 1, Healthcare: 2, Technology: 3", lines=2, placeholder='Predicted label will appear here...'),
allow_flagging='never'
)
demo.launch()