Spaces:
Sleeping
Sleeping
Updated pickel files and app.py.
Browse files
app.py
CHANGED
@@ -12,12 +12,11 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
|
12 |
from flair.data import Sentence
|
13 |
from flair.models import SequenceTagger
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
|
22 |
# Process input text, including removing stopwords, converting to lowercase, and removing punctuation
|
23 |
stop = stopwords.words('english')
|
@@ -30,32 +29,19 @@ def process_text(text):
|
|
30 |
text = " ".join(text.split())
|
31 |
return text
|
32 |
|
33 |
-
# Vectorize
|
34 |
-
vec = CountVectorizer()
|
35 |
-
'''
|
36 |
def vectorize_text(text):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
'''
|
41 |
|
42 |
# Valid input for the model so number of features match
|
43 |
-
def
|
44 |
-
# Load the pickled model
|
45 |
-
filename = 'lr_021223.pkl'
|
46 |
-
loaded_model = pickle.load(open(filename, 'rb'))
|
47 |
-
text = vec.transform([text])
|
48 |
text = process_text(text)
|
49 |
-
|
|
|
50 |
return prediction
|
51 |
|
52 |
-
'''
|
53 |
-
Prediction function
|
54 |
-
#def predict(text):
|
55 |
-
#text = vectorize_text(text)
|
56 |
-
#prediction = model.predict(text)
|
57 |
-
#return prediction
|
58 |
-
'''
|
59 |
|
60 |
# Specify NER model
|
61 |
tagger = SequenceTagger.load('best-model.pt') # SequenceTagger.load('best-model.pt')
|
@@ -71,7 +57,7 @@ def run_ner(input_text):
|
|
71 |
|
72 |
# Run both models, and return a tuple of their results
|
73 |
def run_models(input_text):
|
74 |
-
prediction =
|
75 |
entities = run_ner(input_text)
|
76 |
return prediction, entities
|
77 |
|
|
|
12 |
from flair.data import Sentence
|
13 |
from flair.models import SequenceTagger
|
14 |
|
15 |
+
# Load pickled model and vectorizer
|
16 |
+
model = 'lr_021823.pkl'
|
17 |
+
model_loaded = pickle.load(open(model, 'rb'))
|
18 |
+
vectorizer = 'vectorizer_021823.pkl'
|
19 |
+
vectorizer_loaded = pickle.load(open(vectorizer, 'rb'))
|
|
|
20 |
|
21 |
# Process input text, including removing stopwords, converting to lowercase, and removing punctuation
|
22 |
stop = stopwords.words('english')
|
|
|
29 |
text = " ".join(text.split())
|
30 |
return text
|
31 |
|
32 |
+
# Vectorize text
|
|
|
|
|
33 |
def vectorize_text(text):
|
34 |
+
text = process_text(text)
|
35 |
+
text = vectorizer_loaded.transform([text])
|
36 |
+
return text
|
|
|
37 |
|
38 |
# Valid input for the model so number of features match
|
39 |
+
def class_predict(text):
|
|
|
|
|
|
|
|
|
40 |
text = process_text(text)
|
41 |
+
vec = vectorizer_loaded.transform([text])
|
42 |
+
prediction = model_loaded.predict(vec)
|
43 |
return prediction
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Specify NER model
|
47 |
tagger = SequenceTagger.load('best-model.pt') # SequenceTagger.load('best-model.pt')
|
|
|
57 |
|
58 |
# Run both models, and return a tuple of their results
|
59 |
def run_models(input_text):
|
60 |
+
prediction = class_predict(input_text)
|
61 |
entities = run_ner(input_text)
|
62 |
return prediction, entities
|
63 |
|