# Main file from PIL import Image import requests import matplotlib.pyplot as plt import torch # from torch import nn # from torchvision.models import resnet50 import torchvision.transforms as T torch.set_grad_enabled(False); # COCO classes CLASSES = [ 'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # colors for visualization COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] # standard PyTorch mean-std input image normalization transform = T.Compose([ T.Resize(800), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # for output bounding box post-processing # Convert center of bounding box to relative image coordinates # from (cx, cy, w, h) to (x0, y0, x1, y1) def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=1) # convert predictions to absolute image coordinates def rescale_bboxes(out_bbox, size): img_w, img_h = size b = box_cxcywh_to_xyxy(out_bbox) b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) return b def plot_results(pil_img, prob, boxes): plt.figure(figsize=(8,5)) plt.imshow(pil_img) ax = plt.gca() colors = COLORS * 100 for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors): ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=c, linewidth=3)) cl = p.argmax() text = f'{CLASSES[cl]}: {p[cl]:0.2f}' ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5)) plt.axis('off') plt.show() def detect(im, model, transform): # mean-std normalize the input image (batch-size: 1) img = transform(im).unsqueeze(0) # demo model only support by default images with aspect ratio between 0.5 and 2 # if you want to use images with an aspect ratio outside this range # rescale your image so that the maximum size is at most 1333 for best results assert img.shape[-2] <= 1600 and img.shape[ -1] <= 1600, 'demo model only supports images up to 1600 pixels on each side' # propagate through the model outputs = model(img) # keep only predictions with 0.9+ confidence probas = outputs['pred_logits'].softmax(-1)[0, :, :-1] keep = probas.max(-1).values > 0.9 # convert boxes from [0; 1] to image scales bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size) return probas[keep], bboxes_scaled def load_model(): model = torch.hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=True) model.eval() return model def main(): url = 'http://images.cocodataset.org/val2017/000000039769.jpg' im = Image.open(requests.get(url, stream=True).raw) model = load_model() scores, boxes = detect(im, model, transform) print('len(scores)',len(scores)) print('scores[0].shape', scores[0].shape) print('scores', scores) print('len(boxes)',len(boxes)) print('boxes',boxes) plot_results(im, scores, boxes) if __name__ == "__main__": main()