Spaces:
Build error
Build error
import numpy as np | |
class LambdaWarmUpCosineScheduler: | |
""" | |
note: use with a base_lr of 1.0 | |
""" | |
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0): | |
self.lr_warm_up_steps = warm_up_steps | |
self.lr_start = lr_start | |
self.lr_min = lr_min | |
self.lr_max = lr_max | |
self.lr_max_decay_steps = max_decay_steps | |
self.last_lr = 0. | |
self.verbosity_interval = verbosity_interval | |
def schedule(self, n): | |
if self.verbosity_interval > 0: | |
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}") | |
if n < self.lr_warm_up_steps: | |
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start | |
self.last_lr = lr | |
return lr | |
else: | |
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps) | |
t = min(t, 1.0) | |
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * ( | |
1 + np.cos(t * np.pi)) | |
self.last_lr = lr | |
return lr | |
def __call__(self, n): | |
return self.schedule(n) | |