Spaces:
Build error
Build error
Commit
·
03e871c
1
Parent(s):
dc1ad90
taming directory
Browse files- CLIP +1 -0
- app.py +543 -99
- gradio_new.py +0 -663
- taming-transformers +1 -0
CLIP
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit a9b1bf5920416aaeaec965c25dd9e8f98c864f16
|
app.py
CHANGED
@@ -1,25 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
import fire
|
3 |
import gradio as gr
|
|
|
|
|
4 |
import numpy as np
|
|
|
|
|
5 |
import rich
|
|
|
|
|
6 |
import torch
|
7 |
from contextlib import nullcontext
|
|
|
8 |
from einops import rearrange
|
9 |
from functools import partial
|
10 |
from ldm.models.diffusion.ddim import DDIMSampler
|
11 |
-
from ldm.util import load_and_preprocess, instantiate_from_config
|
|
|
12 |
from omegaconf import OmegaConf
|
13 |
from PIL import Image
|
14 |
from rich import print
|
|
|
15 |
from torch import autocast
|
16 |
from torchvision import transforms
|
17 |
|
18 |
|
19 |
-
|
|
|
|
|
20 |
_GPU_INDEX = 0
|
21 |
# _GPU_INDEX = 2
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def load_model_from_config(config, ckpt, device, verbose=False):
|
25 |
print(f'Loading model from {ckpt}')
|
@@ -81,27 +111,180 @@ def sample_model(input_im, model, sampler, precision, h, w, ddim_steps, n_sample
|
|
81 |
return torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0).cpu()
|
82 |
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
):
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
print('old input_im:', input_im.size)
|
|
|
102 |
|
103 |
if preprocess:
|
104 |
-
input_im = load_and_preprocess(input_im)
|
105 |
input_im = (input_im / 255.0).astype(np.float32)
|
106 |
# (H, W, 3) array in [0, 1].
|
107 |
|
@@ -109,8 +292,8 @@ def main(
|
|
109 |
input_im = input_im.resize([256, 256], Image.Resampling.LANCZOS)
|
110 |
input_im = np.asarray(input_im, dtype=np.float32) / 255.0
|
111 |
# (H, W, 4) array in [0, 1].
|
112 |
-
|
113 |
-
# old method:
|
114 |
# input_im[input_im[:, :, -1] <= 0.9] = [1., 1., 1., 1.]
|
115 |
|
116 |
# new method: apply correct method of compositing to avoid sudden transitions / thresholding
|
@@ -118,102 +301,363 @@ def main(
|
|
118 |
alpha = input_im[:, :, 3:4]
|
119 |
white_im = np.ones_like(input_im)
|
120 |
input_im = alpha * input_im + (1.0 - alpha) * white_im
|
121 |
-
|
122 |
input_im = input_im[:, :, 0:3]
|
123 |
# (H, W, 3) array in [0, 1].
|
124 |
|
125 |
-
print('
|
126 |
-
|
127 |
|
128 |
-
|
129 |
-
input_im = input_im * 2 - 1
|
130 |
-
input_im = transforms.functional.resize(input_im, [h, w])
|
131 |
|
132 |
-
sampler = DDIMSampler(model)
|
133 |
-
x_samples_ddim = sample_model(input_im, model, sampler, precision, h, w,
|
134 |
-
ddim_steps, n_samples, scale, ddim_eta, x, y, z)
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
else:
|
144 |
-
|
145 |
|
|
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
''
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
|
159 |
def run_demo(
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
device = f'cuda:{device_idx}'
|
166 |
config = OmegaConf.load(config)
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
]
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
#
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
demo.launch(enable_queue=True, share=True)
|
216 |
|
217 |
|
218 |
if __name__ == '__main__':
|
|
|
219 |
fire.Fire(run_demo)
|
|
|
1 |
+
'''
|
2 |
+
conda activate zero123
|
3 |
+
cd stable-diffusion
|
4 |
+
python gradio_new.py 0
|
5 |
+
'''
|
6 |
+
|
7 |
+
import diffusers # 0.12.1
|
8 |
import math
|
9 |
import fire
|
10 |
import gradio as gr
|
11 |
+
import lovely_numpy
|
12 |
+
import lovely_tensors
|
13 |
import numpy as np
|
14 |
+
import plotly.express as px
|
15 |
+
import plotly.graph_objects as go
|
16 |
import rich
|
17 |
+
import sys
|
18 |
+
import time
|
19 |
import torch
|
20 |
from contextlib import nullcontext
|
21 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
22 |
from einops import rearrange
|
23 |
from functools import partial
|
24 |
from ldm.models.diffusion.ddim import DDIMSampler
|
25 |
+
from ldm.util import create_carvekit_interface, load_and_preprocess, instantiate_from_config
|
26 |
+
from lovely_numpy import lo
|
27 |
from omegaconf import OmegaConf
|
28 |
from PIL import Image
|
29 |
from rich import print
|
30 |
+
from transformers import AutoFeatureExtractor #, CLIPImageProcessor
|
31 |
from torch import autocast
|
32 |
from torchvision import transforms
|
33 |
|
34 |
|
35 |
+
_SHOW_DESC = True
|
36 |
+
_SHOW_INTERMEDIATE = False
|
37 |
+
# _SHOW_INTERMEDIATE = True
|
38 |
_GPU_INDEX = 0
|
39 |
# _GPU_INDEX = 2
|
40 |
|
41 |
+
# _TITLE = 'Zero-Shot Control of Camera Viewpoints within a Single Image'
|
42 |
+
_TITLE = 'Zero-1-to-3: Zero-shot One Image to 3D Object'
|
43 |
+
|
44 |
+
# This demo allows you to generate novel viewpoints of an object depicted in an input image using a fine-tuned version of Stable Diffusion.
|
45 |
+
_DESCRIPTION = '''
|
46 |
+
This demo allows you to control camera rotation and thereby generate novel viewpoints of an object within a single image.
|
47 |
+
It is based on Stable Diffusion. Check out our [project webpage](https://zero123.cs.columbia.edu/) and [paper](https://arxiv.org/) if you want to learn more about the method!
|
48 |
+
Note that this model is not intended for images of humans or faces, and is unlikely to work well for them.
|
49 |
+
'''
|
50 |
+
|
51 |
+
_ARTICLE = 'See uses.md'
|
52 |
+
|
53 |
|
54 |
def load_model_from_config(config, ckpt, device, verbose=False):
|
55 |
print(f'Loading model from {ckpt}')
|
|
|
111 |
return torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0).cpu()
|
112 |
|
113 |
|
114 |
+
class CameraVisualizer:
|
115 |
+
def __init__(self, gradio_plot):
|
116 |
+
self._gradio_plot = gradio_plot
|
117 |
+
self._fig = None
|
118 |
+
self._polar = 0.0
|
119 |
+
self._azimuth = 0.0
|
120 |
+
self._radius = 0.0
|
121 |
+
self._raw_image = None
|
122 |
+
self._8bit_image = None
|
123 |
+
self._image_colorscale = None
|
124 |
+
|
125 |
+
def polar_change(self, value):
|
126 |
+
self._polar = value
|
127 |
+
# return self.update_figure()
|
128 |
+
|
129 |
+
def azimuth_change(self, value):
|
130 |
+
self._azimuth = value
|
131 |
+
# return self.update_figure()
|
132 |
+
|
133 |
+
def radius_change(self, value):
|
134 |
+
self._radius = value
|
135 |
+
# return self.update_figure()
|
136 |
+
|
137 |
+
def encode_image(self, raw_image):
|
138 |
+
'''
|
139 |
+
:param raw_image (H, W, 3) array of uint8 in [0, 255].
|
140 |
+
'''
|
141 |
+
# https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
|
142 |
+
|
143 |
+
dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
|
144 |
+
idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
|
145 |
+
|
146 |
+
self._raw_image = raw_image
|
147 |
+
self._8bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
|
148 |
+
# self._8bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
|
149 |
+
# 'P', palette='WEB', dither=None)
|
150 |
+
self._image_colorscale = [
|
151 |
+
[i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
|
152 |
+
|
153 |
+
# return self.update_figure()
|
154 |
+
|
155 |
+
def update_figure(self):
|
156 |
+
fig = go.Figure()
|
157 |
+
|
158 |
+
if self._raw_image is not None:
|
159 |
+
(H, W, C) = self._raw_image.shape
|
160 |
+
|
161 |
+
x = np.zeros((H, W))
|
162 |
+
(y, z) = np.meshgrid(np.linspace(-1.0, 1.0, W), np.linspace(1.0, -1.0, H) * H / W)
|
163 |
+
print('x:', lo(x))
|
164 |
+
print('y:', lo(y))
|
165 |
+
print('z:', lo(z))
|
166 |
+
|
167 |
+
fig.add_trace(go.Surface(
|
168 |
+
x=x, y=y, z=z,
|
169 |
+
surfacecolor=self._8bit_image,
|
170 |
+
cmin=0,
|
171 |
+
cmax=255,
|
172 |
+
colorscale=self._image_colorscale,
|
173 |
+
showscale=False,
|
174 |
+
lighting_diffuse=1.0,
|
175 |
+
lighting_ambient=1.0,
|
176 |
+
lighting_fresnel=1.0,
|
177 |
+
lighting_roughness=1.0,
|
178 |
+
lighting_specular=0.3))
|
179 |
+
|
180 |
+
scene_bounds = 3.5
|
181 |
+
base_radius = 2.5
|
182 |
+
zoom_scale = 1.5 # Note that input radius offset is in [-0.5, 0.5].
|
183 |
+
fov_deg = 50.0
|
184 |
+
edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
|
185 |
+
|
186 |
+
input_cone = calc_cam_cone_pts_3d(
|
187 |
+
0.0, 0.0, base_radius, fov_deg) # (5, 3).
|
188 |
+
output_cone = calc_cam_cone_pts_3d(
|
189 |
+
self._polar, self._azimuth, base_radius + self._radius * zoom_scale, fov_deg) # (5, 3).
|
190 |
+
# print('input_cone:', lo(input_cone).v)
|
191 |
+
# print('output_cone:', lo(output_cone).v)
|
192 |
+
|
193 |
+
for (cone, clr, legend) in [(input_cone, 'green', 'Input view'),
|
194 |
+
(output_cone, 'blue', 'Target view')]:
|
195 |
+
|
196 |
+
for (i, edge) in enumerate(edges):
|
197 |
+
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
|
198 |
+
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
|
199 |
+
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
|
200 |
+
fig.add_trace(go.Scatter3d(
|
201 |
+
x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
|
202 |
+
line=dict(color=clr, width=3),
|
203 |
+
name=legend, showlegend=(i == 0)))
|
204 |
+
# text=(legend if i == 0 else None),
|
205 |
+
# textposition='bottom center'))
|
206 |
+
# hoverinfo='text',
|
207 |
+
# hovertext='hovertext'))
|
208 |
+
|
209 |
+
# Add label.
|
210 |
+
if cone[0, 2] <= base_radius / 2.0:
|
211 |
+
fig.add_trace(go.Scatter3d(
|
212 |
+
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
|
213 |
+
mode='text', text=legend, textposition='bottom center'))
|
214 |
+
else:
|
215 |
+
fig.add_trace(go.Scatter3d(
|
216 |
+
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
|
217 |
+
mode='text', text=legend, textposition='top center'))
|
218 |
+
|
219 |
+
# look at center of scene
|
220 |
+
fig.update_layout(
|
221 |
+
# width=640,
|
222 |
+
# height=480,
|
223 |
+
# height=400,
|
224 |
+
height=360,
|
225 |
+
autosize=True,
|
226 |
+
hovermode=False,
|
227 |
+
margin=go.layout.Margin(l=0, r=0, b=0, t=0),
|
228 |
+
showlegend=True,
|
229 |
+
legend=dict(
|
230 |
+
yanchor='bottom',
|
231 |
+
y=0.01,
|
232 |
+
xanchor='right',
|
233 |
+
x=0.99,
|
234 |
+
),
|
235 |
+
scene=dict(
|
236 |
+
aspectmode='manual',
|
237 |
+
aspectratio=dict(x=1, y=1, z=1.0),
|
238 |
+
camera=dict(
|
239 |
+
eye=dict(x=base_radius - 1.6, y=0.0, z=0.6),
|
240 |
+
center=dict(x=0.0, y=0.0, z=0.0),
|
241 |
+
up=dict(x=0.0, y=0.0, z=1.0)),
|
242 |
+
xaxis_title='',
|
243 |
+
yaxis_title='',
|
244 |
+
zaxis_title='',
|
245 |
+
xaxis=dict(
|
246 |
+
range=[-scene_bounds, scene_bounds],
|
247 |
+
showticklabels=False,
|
248 |
+
showgrid=True,
|
249 |
+
zeroline=False,
|
250 |
+
showbackground=True,
|
251 |
+
showspikes=False,
|
252 |
+
showline=False,
|
253 |
+
ticks=''),
|
254 |
+
yaxis=dict(
|
255 |
+
range=[-scene_bounds, scene_bounds],
|
256 |
+
showticklabels=False,
|
257 |
+
showgrid=True,
|
258 |
+
zeroline=False,
|
259 |
+
showbackground=True,
|
260 |
+
showspikes=False,
|
261 |
+
showline=False,
|
262 |
+
ticks=''),
|
263 |
+
zaxis=dict(
|
264 |
+
range=[-scene_bounds, scene_bounds],
|
265 |
+
showticklabels=False,
|
266 |
+
showgrid=True,
|
267 |
+
zeroline=False,
|
268 |
+
showbackground=True,
|
269 |
+
showspikes=False,
|
270 |
+
showline=False,
|
271 |
+
ticks='')))
|
272 |
+
|
273 |
+
self._fig = fig
|
274 |
+
return fig
|
275 |
+
|
276 |
+
|
277 |
+
def preprocess_image(models, input_im, preprocess):
|
278 |
+
'''
|
279 |
+
:param input_im (PIL Image).
|
280 |
+
:return input_im (H, W, 3) array in [0, 1].
|
281 |
+
'''
|
282 |
+
|
283 |
print('old input_im:', input_im.size)
|
284 |
+
start_time = time.time()
|
285 |
|
286 |
if preprocess:
|
287 |
+
input_im = load_and_preprocess(models['carvekit'], input_im)
|
288 |
input_im = (input_im / 255.0).astype(np.float32)
|
289 |
# (H, W, 3) array in [0, 1].
|
290 |
|
|
|
292 |
input_im = input_im.resize([256, 256], Image.Resampling.LANCZOS)
|
293 |
input_im = np.asarray(input_im, dtype=np.float32) / 255.0
|
294 |
# (H, W, 4) array in [0, 1].
|
295 |
+
|
296 |
+
# old method: thresholding background, very important
|
297 |
# input_im[input_im[:, :, -1] <= 0.9] = [1., 1., 1., 1.]
|
298 |
|
299 |
# new method: apply correct method of compositing to avoid sudden transitions / thresholding
|
|
|
301 |
alpha = input_im[:, :, 3:4]
|
302 |
white_im = np.ones_like(input_im)
|
303 |
input_im = alpha * input_im + (1.0 - alpha) * white_im
|
304 |
+
|
305 |
input_im = input_im[:, :, 0:3]
|
306 |
# (H, W, 3) array in [0, 1].
|
307 |
|
308 |
+
print(f'Infer foreground mask (preprocess_image) took {time.time() - start_time:.3f}s.')
|
309 |
+
print('new input_im:', lo(input_im))
|
310 |
|
311 |
+
return input_im
|
|
|
|
|
312 |
|
|
|
|
|
|
|
313 |
|
314 |
+
def main_run(models, device, cam_vis, return_what,
|
315 |
+
x=0.0, y=0.0, z=0.0,
|
316 |
+
raw_im=None, preprocess=True,
|
317 |
+
scale=3.0, n_samples=4, ddim_steps=50, ddim_eta=1.0,
|
318 |
+
precision='fp32', h=256, w=256):
|
319 |
+
'''
|
320 |
+
:param raw_im (PIL Image).
|
321 |
+
'''
|
322 |
|
323 |
+
safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
|
324 |
+
(image, has_nsfw_concept) = models['nsfw'](
|
325 |
+
images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
|
326 |
+
print('has_nsfw_concept:', has_nsfw_concept)
|
327 |
+
if np.any(has_nsfw_concept):
|
328 |
+
print('NSFW content detected.')
|
329 |
+
to_return = [None] * 10
|
330 |
+
description = ('### <span style="color:red"> Unfortunately, '
|
331 |
+
'potential NSFW content was detected, '
|
332 |
+
'which is not supported by our model. '
|
333 |
+
'Please try again with a different image. </span>')
|
334 |
+
if 'angles' in return_what:
|
335 |
+
to_return[0] = 0.0
|
336 |
+
to_return[1] = 0.0
|
337 |
+
to_return[2] = 0.0
|
338 |
+
to_return[3] = description
|
339 |
+
else:
|
340 |
+
to_return[0] = description
|
341 |
+
return to_return
|
342 |
+
|
343 |
else:
|
344 |
+
print('Safety check passed.')
|
345 |
|
346 |
+
input_im = preprocess_image(models, raw_im, preprocess)
|
347 |
|
348 |
+
# if np.random.rand() < 0.3:
|
349 |
+
# description = ('Unfortunately, a human, a face, or potential NSFW content was detected, '
|
350 |
+
# 'which is not supported by our model.')
|
351 |
+
# if vis_only:
|
352 |
+
# return (None, None, description)
|
353 |
+
# else:
|
354 |
+
# return (None, None, None, description)
|
355 |
|
356 |
+
show_in_im1 = (input_im * 255.0).astype(np.uint8)
|
357 |
+
show_in_im2 = Image.fromarray(show_in_im1)
|
358 |
+
|
359 |
+
if 'rand' in return_what:
|
360 |
+
x = int(np.round(np.arcsin(np.random.uniform(-1.0, 1.0)) * 160.0 / np.pi)) # [-80, 80].
|
361 |
+
y = int(np.round(np.random.uniform(-150.0, 150.0)))
|
362 |
+
z = 0.0
|
363 |
+
|
364 |
+
cam_vis.polar_change(x)
|
365 |
+
cam_vis.azimuth_change(y)
|
366 |
+
cam_vis.radius_change(z)
|
367 |
+
cam_vis.encode_image(show_in_im1)
|
368 |
+
new_fig = cam_vis.update_figure()
|
369 |
+
|
370 |
+
if 'vis' in return_what:
|
371 |
+
description = ('The viewpoints are visualized on the top right. '
|
372 |
+
'Click Run Generation to update the results on the bottom right.')
|
373 |
+
|
374 |
+
if 'angles' in return_what:
|
375 |
+
return (x, y, z, description, new_fig, show_in_im2)
|
376 |
+
else:
|
377 |
+
return (description, new_fig, show_in_im2)
|
378 |
+
|
379 |
+
elif 'gen' in return_what:
|
380 |
+
input_im = transforms.ToTensor()(input_im).unsqueeze(0).to(device)
|
381 |
+
input_im = input_im * 2 - 1
|
382 |
+
input_im = transforms.functional.resize(input_im, [h, w])
|
383 |
+
|
384 |
+
sampler = DDIMSampler(models['turncam'])
|
385 |
+
# used_x = -x # NOTE: Polar makes more sense in Basile's opinion this way!
|
386 |
+
used_x = x # NOTE: Set this way for consistency.
|
387 |
+
x_samples_ddim = sample_model(input_im, models['turncam'], sampler, precision, h, w,
|
388 |
+
ddim_steps, n_samples, scale, ddim_eta, used_x, y, z)
|
389 |
+
|
390 |
+
output_ims = []
|
391 |
+
for x_sample in x_samples_ddim:
|
392 |
+
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
393 |
+
output_ims.append(Image.fromarray(x_sample.astype(np.uint8)))
|
394 |
+
|
395 |
+
description = None
|
396 |
+
|
397 |
+
if 'angles' in return_what:
|
398 |
+
return (x, y, z, description, new_fig, show_in_im2, output_ims)
|
399 |
+
else:
|
400 |
+
return (description, new_fig, show_in_im2, output_ims)
|
401 |
+
|
402 |
+
|
403 |
+
def calc_cam_cone_pts_3d(polar_deg, azimuth_deg, radius_m, fov_deg):
|
404 |
+
'''
|
405 |
+
:param polar_deg (float).
|
406 |
+
:param azimuth_deg (float).
|
407 |
+
:param radius_m (float).
|
408 |
+
:param fov_deg (float).
|
409 |
+
:return (5, 3) array of float with (x, y, z).
|
410 |
+
'''
|
411 |
+
polar_rad = np.deg2rad(polar_deg)
|
412 |
+
azimuth_rad = np.deg2rad(azimuth_deg)
|
413 |
+
fov_rad = np.deg2rad(fov_deg)
|
414 |
+
polar_rad = -polar_rad # NOTE: Inverse of how used_x relates to x.
|
415 |
+
|
416 |
+
# Camera pose center:
|
417 |
+
cam_x = radius_m * np.cos(azimuth_rad) * np.cos(polar_rad)
|
418 |
+
cam_y = radius_m * np.sin(azimuth_rad) * np.cos(polar_rad)
|
419 |
+
cam_z = radius_m * np.sin(polar_rad)
|
420 |
+
|
421 |
+
# Obtain four corners of camera frustum, assuming it is looking at origin.
|
422 |
+
# First, obtain camera extrinsics (rotation matrix only):
|
423 |
+
camera_R = np.array([[np.cos(azimuth_rad) * np.cos(polar_rad),
|
424 |
+
-np.sin(azimuth_rad),
|
425 |
+
-np.cos(azimuth_rad) * np.sin(polar_rad)],
|
426 |
+
[np.sin(azimuth_rad) * np.cos(polar_rad),
|
427 |
+
np.cos(azimuth_rad),
|
428 |
+
-np.sin(azimuth_rad) * np.sin(polar_rad)],
|
429 |
+
[np.sin(polar_rad),
|
430 |
+
0.0,
|
431 |
+
np.cos(polar_rad)]])
|
432 |
+
# print('camera_R:', lo(camera_R).v)
|
433 |
+
|
434 |
+
# Multiply by corners in camera space to obtain go to space:
|
435 |
+
corn1 = [-1.0, np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
|
436 |
+
corn2 = [-1.0, -np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
|
437 |
+
corn3 = [-1.0, -np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
|
438 |
+
corn4 = [-1.0, np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
|
439 |
+
corn1 = np.dot(camera_R, corn1)
|
440 |
+
corn2 = np.dot(camera_R, corn2)
|
441 |
+
corn3 = np.dot(camera_R, corn3)
|
442 |
+
corn4 = np.dot(camera_R, corn4)
|
443 |
+
|
444 |
+
# Now attach as offset to actual 3D camera position:
|
445 |
+
corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2)
|
446 |
+
corn_x1 = cam_x + corn1[0]
|
447 |
+
corn_y1 = cam_y + corn1[1]
|
448 |
+
corn_z1 = cam_z + corn1[2]
|
449 |
+
corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2)
|
450 |
+
corn_x2 = cam_x + corn2[0]
|
451 |
+
corn_y2 = cam_y + corn2[1]
|
452 |
+
corn_z2 = cam_z + corn2[2]
|
453 |
+
corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2)
|
454 |
+
corn_x3 = cam_x + corn3[0]
|
455 |
+
corn_y3 = cam_y + corn3[1]
|
456 |
+
corn_z3 = cam_z + corn3[2]
|
457 |
+
corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2)
|
458 |
+
corn_x4 = cam_x + corn4[0]
|
459 |
+
corn_y4 = cam_y + corn4[1]
|
460 |
+
corn_z4 = cam_z + corn4[2]
|
461 |
+
|
462 |
+
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
|
463 |
+
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
|
464 |
+
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
|
465 |
+
|
466 |
+
return np.array([xs, ys, zs]).T
|
467 |
|
468 |
|
469 |
def run_demo(
|
470 |
+
device_idx=_GPU_INDEX,
|
471 |
+
ckpt='105000.ckpt',
|
472 |
+
config='configs/sd-objaverse-finetune-c_concat-256.yaml'):
|
473 |
+
|
474 |
+
print('sys.argv:', sys.argv)
|
475 |
+
if len(sys.argv) > 1:
|
476 |
+
print('old device_idx:', device_idx)
|
477 |
+
device_idx = int(sys.argv[1])
|
478 |
+
print('new device_idx:', device_idx)
|
479 |
|
480 |
device = f'cuda:{device_idx}'
|
481 |
config = OmegaConf.load(config)
|
482 |
+
|
483 |
+
# Instantiate all models beforehand for efficiency.
|
484 |
+
models = dict()
|
485 |
+
print('Instantiating LatentDiffusion...')
|
486 |
+
models['turncam'] = load_model_from_config(config, ckpt, device=device)
|
487 |
+
print('Instantiating Carvekit HiInterface...')
|
488 |
+
models['carvekit'] = create_carvekit_interface()
|
489 |
+
print('Instantiating StableDiffusionSafetyChecker...')
|
490 |
+
models['nsfw'] = StableDiffusionSafetyChecker.from_pretrained(
|
491 |
+
'CompVis/stable-diffusion-safety-checker').to(device)
|
492 |
+
print('Instantiating AutoFeatureExtractor...')
|
493 |
+
models['clip_fe'] = AutoFeatureExtractor.from_pretrained(
|
494 |
+
'CompVis/stable-diffusion-safety-checker')
|
495 |
+
|
496 |
+
# Reduce NSFW false positives.
|
497 |
+
# NOTE: At the time of writing, and for diffusers 0.12.1, the default parameters are:
|
498 |
+
# models['nsfw'].concept_embeds_weights:
|
499 |
+
# [0.1800, 0.1900, 0.2060, 0.2100, 0.1950, 0.1900, 0.1940, 0.1900, 0.1900, 0.2200, 0.1900,
|
500 |
+
# 0.1900, 0.1950, 0.1984, 0.2100, 0.2140, 0.2000].
|
501 |
+
# models['nsfw'].special_care_embeds_weights:
|
502 |
+
# [0.1950, 0.2000, 0.2200].
|
503 |
+
# We multiply all by some factor > 1 to make them less likely to be triggered.
|
504 |
+
models['nsfw'].concept_embeds_weights *= 1.07
|
505 |
+
models['nsfw'].special_care_embeds_weights *= 1.07
|
506 |
+
|
507 |
+
with open('instructions.md', 'r') as f:
|
508 |
+
article = f.read()
|
509 |
+
|
510 |
+
# Compose demo layout & data flow.
|
511 |
+
demo = gr.Blocks(title=_TITLE)
|
512 |
+
|
513 |
+
with demo:
|
514 |
+
gr.Markdown('# ' + _TITLE)
|
515 |
+
gr.Markdown(_DESCRIPTION)
|
516 |
+
|
517 |
+
with gr.Row():
|
518 |
+
with gr.Column(scale=0.9, variant='panel'):
|
519 |
+
|
520 |
+
image_block = gr.Image(type='pil', image_mode='RGBA',
|
521 |
+
label='Input image of single object')
|
522 |
+
preprocess_chk = gr.Checkbox(
|
523 |
+
True, label='Preprocess image automatically (remove background and recenter object)')
|
524 |
+
# info='If enabled, the uploaded image will be preprocessed to remove the background and recenter the object by cropping and/or padding as necessary. '
|
525 |
+
# 'If disabled, the image will be used as-is, *BUT* a fully transparent or white background is required.'),
|
526 |
+
|
527 |
+
gr.Markdown('*Try camera position presets:*')
|
528 |
+
with gr.Row():
|
529 |
+
left_btn = gr.Button('View from the Left', variant='primary')
|
530 |
+
above_btn = gr.Button('View from Above', variant='primary')
|
531 |
+
right_btn = gr.Button('View from the Right', variant='primary')
|
532 |
+
with gr.Row():
|
533 |
+
random_btn = gr.Button('Random Rotation', variant='primary')
|
534 |
+
below_btn = gr.Button('View from Below', variant='primary')
|
535 |
+
behind_btn = gr.Button('View from Behind', variant='primary')
|
536 |
+
|
537 |
+
gr.Markdown('*Control camera position manually:*')
|
538 |
+
polar_slider = gr.Slider(
|
539 |
+
-90, 90, value=0, step=5, label='Polar angle (vertical rotation in degrees)')
|
540 |
+
# info='Positive values move the camera down, while negative values move the camera up.')
|
541 |
+
azimuth_slider = gr.Slider(
|
542 |
+
-180, 180, value=0, step=5, label='Azimuth angle (horizontal rotation in degrees)')
|
543 |
+
# info='Positive values move the camera right, while negative values move the camera left.')
|
544 |
+
radius_slider = gr.Slider(
|
545 |
+
-0.5, 0.5, value=0.0, step=0.1, label='Zoom (relative distance from center)')
|
546 |
+
# info='Positive values move the camera further away, while negative values move the camera closer.')
|
547 |
+
|
548 |
+
samples_slider = gr.Slider(1, 8, value=4, step=1,
|
549 |
+
label='Number of samples to generate')
|
550 |
+
|
551 |
+
with gr.Accordion('Advanced options', open=False):
|
552 |
+
scale_slider = gr.Slider(0, 30, value=3, step=1,
|
553 |
+
label='Diffusion guidance scale')
|
554 |
+
steps_slider = gr.Slider(5, 200, value=75, step=5,
|
555 |
+
label='Number of diffusion inference steps')
|
556 |
+
|
557 |
+
with gr.Row():
|
558 |
+
vis_btn = gr.Button('Visualize Angles', variant='secondary')
|
559 |
+
run_btn = gr.Button('Run Generation', variant='primary')
|
560 |
+
|
561 |
+
desc_output = gr.Markdown('The results will appear on the right.', visible=_SHOW_DESC)
|
562 |
+
|
563 |
+
with gr.Column(scale=1.1, variant='panel'):
|
564 |
+
|
565 |
+
vis_output = gr.Plot(
|
566 |
+
label='Relationship between input (green) and output (blue) camera poses')
|
567 |
+
|
568 |
+
gen_output = gr.Gallery(label='Generated images from specified new viewpoint')
|
569 |
+
gen_output.style(grid=2)
|
570 |
+
|
571 |
+
preproc_output = gr.Image(type='pil', image_mode='RGB',
|
572 |
+
label='Preprocessed input image', visible=_SHOW_INTERMEDIATE)
|
573 |
+
|
574 |
+
gr.Markdown(article)
|
575 |
+
|
576 |
+
# NOTE: I am forced to update vis_output for these preset buttons,
|
577 |
+
# because otherwise the gradio plot always resets the plotly 3D viewpoint for some reason,
|
578 |
+
# which might confuse the user into thinking that the plot has been updated too.
|
579 |
+
|
580 |
+
# OLD 1:
|
581 |
+
# left_btn.click(fn=lambda: [0.0, -90.0], #, 0.0],
|
582 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider]), #], radius_slider])
|
583 |
+
# above_btn.click(fn=lambda: [90.0, 0.0], #, 0.0],
|
584 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider]), #, radius_slider])
|
585 |
+
# right_btn.click(fn=lambda: [0.0, 90.0], #, 0.0],
|
586 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider]), #, radius_slider])
|
587 |
+
# random_btn.click(fn=lambda: [int(np.round(np.random.uniform(-60.0, 60.0))),
|
588 |
+
# int(np.round(np.random.uniform(-150.0, 150.0)))], #, 0.0],
|
589 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider]), #, radius_slider])
|
590 |
+
# below_btn.click(fn=lambda: [-90.0, 0.0], #, 0.0],
|
591 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider]), #, radius_slider])
|
592 |
+
# behind_btn.click(fn=lambda: [0.0, 180.0], #, 0.0],
|
593 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider]), #, radius_slider])
|
594 |
+
|
595 |
+
# OLD 2:
|
596 |
+
# preset_text = ('You have selected a preset target camera view. '
|
597 |
+
# 'Now click Run Generation to update the results!')
|
598 |
+
|
599 |
+
# left_btn.click(fn=lambda: [0.0, -90.0, None, preset_text],
|
600 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
601 |
+
# above_btn.click(fn=lambda: [90.0, 0.0, None, preset_text],
|
602 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
603 |
+
# right_btn.click(fn=lambda: [0.0, 90.0, None, preset_text],
|
604 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
605 |
+
# random_btn.click(fn=lambda: [int(np.round(np.random.uniform(-60.0, 60.0))),
|
606 |
+
# int(np.round(np.random.uniform(-150.0, 150.0))),
|
607 |
+
# None, preset_text],
|
608 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
609 |
+
# below_btn.click(fn=lambda: [-90.0, 0.0, None, preset_text],
|
610 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
611 |
+
# behind_btn.click(fn=lambda: [0.0, 180.0, None, preset_text],
|
612 |
+
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
613 |
+
|
614 |
+
# OLD 3 (does not work at all):
|
615 |
+
# def a():
|
616 |
+
# polar_slider.value = 77.7
|
617 |
+
# polar_slider.postprocess(77.7)
|
618 |
+
# print('testa')
|
619 |
+
# left_btn.click(fn=a)
|
620 |
+
|
621 |
+
cam_vis = CameraVisualizer(vis_output)
|
622 |
+
|
623 |
+
vis_btn.click(fn=partial(main_run, models, device, cam_vis, 'vis'),
|
624 |
+
inputs=[polar_slider, azimuth_slider, radius_slider,
|
625 |
+
image_block, preprocess_chk],
|
626 |
+
outputs=[desc_output, vis_output, preproc_output])
|
627 |
+
|
628 |
+
run_btn.click(fn=partial(main_run, models, device, cam_vis, 'gen'),
|
629 |
+
inputs=[polar_slider, azimuth_slider, radius_slider,
|
630 |
+
image_block, preprocess_chk,
|
631 |
+
scale_slider, samples_slider, steps_slider],
|
632 |
+
outputs=[desc_output, vis_output, preproc_output, gen_output])
|
633 |
+
|
634 |
+
# NEW:
|
635 |
+
preset_inputs = [image_block, preprocess_chk,
|
636 |
+
scale_slider, samples_slider, steps_slider]
|
637 |
+
preset_outputs = [polar_slider, azimuth_slider, radius_slider,
|
638 |
+
desc_output, vis_output, preproc_output, gen_output]
|
639 |
+
left_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
|
640 |
+
0.0, -90.0, 0.0),
|
641 |
+
inputs=preset_inputs, outputs=preset_outputs)
|
642 |
+
above_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
|
643 |
+
-90.0, 0.0, 0.0),
|
644 |
+
inputs=preset_inputs, outputs=preset_outputs)
|
645 |
+
right_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
|
646 |
+
0.0, 90.0, 0.0),
|
647 |
+
inputs=preset_inputs, outputs=preset_outputs)
|
648 |
+
random_btn.click(fn=partial(main_run, models, device, cam_vis, 'rand_angles_gen',
|
649 |
+
-1.0, -1.0, -1.0),
|
650 |
+
inputs=preset_inputs, outputs=preset_outputs)
|
651 |
+
below_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
|
652 |
+
90.0, 0.0, 0.0),
|
653 |
+
inputs=preset_inputs, outputs=preset_outputs)
|
654 |
+
behind_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
|
655 |
+
0.0, 180.0, 0.0),
|
656 |
+
inputs=preset_inputs, outputs=preset_outputs)
|
657 |
+
|
658 |
demo.launch(enable_queue=True, share=True)
|
659 |
|
660 |
|
661 |
if __name__ == '__main__':
|
662 |
+
|
663 |
fire.Fire(run_demo)
|
gradio_new.py
DELETED
@@ -1,663 +0,0 @@
|
|
1 |
-
'''
|
2 |
-
conda activate zero123
|
3 |
-
cd stable-diffusion
|
4 |
-
python gradio_new.py 0
|
5 |
-
'''
|
6 |
-
|
7 |
-
import diffusers # 0.12.1
|
8 |
-
import math
|
9 |
-
import fire
|
10 |
-
import gradio as gr
|
11 |
-
import lovely_numpy
|
12 |
-
import lovely_tensors
|
13 |
-
import numpy as np
|
14 |
-
import plotly.express as px
|
15 |
-
import plotly.graph_objects as go
|
16 |
-
import rich
|
17 |
-
import sys
|
18 |
-
import time
|
19 |
-
import torch
|
20 |
-
from contextlib import nullcontext
|
21 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
22 |
-
from einops import rearrange
|
23 |
-
from functools import partial
|
24 |
-
from ldm.models.diffusion.ddim import DDIMSampler
|
25 |
-
from ldm.util import create_carvekit_interface, load_and_preprocess, instantiate_from_config
|
26 |
-
from lovely_numpy import lo
|
27 |
-
from omegaconf import OmegaConf
|
28 |
-
from PIL import Image
|
29 |
-
from rich import print
|
30 |
-
from transformers import AutoFeatureExtractor #, CLIPImageProcessor
|
31 |
-
from torch import autocast
|
32 |
-
from torchvision import transforms
|
33 |
-
|
34 |
-
|
35 |
-
_SHOW_DESC = True
|
36 |
-
_SHOW_INTERMEDIATE = False
|
37 |
-
# _SHOW_INTERMEDIATE = True
|
38 |
-
_GPU_INDEX = 0
|
39 |
-
# _GPU_INDEX = 2
|
40 |
-
|
41 |
-
# _TITLE = 'Zero-Shot Control of Camera Viewpoints within a Single Image'
|
42 |
-
_TITLE = 'Zero-1-to-3: Zero-shot One Image to 3D Object'
|
43 |
-
|
44 |
-
# This demo allows you to generate novel viewpoints of an object depicted in an input image using a fine-tuned version of Stable Diffusion.
|
45 |
-
_DESCRIPTION = '''
|
46 |
-
This demo allows you to control camera rotation and thereby generate novel viewpoints of an object within a single image.
|
47 |
-
It is based on Stable Diffusion. Check out our [project webpage](https://zero123.cs.columbia.edu/) and [paper](https://arxiv.org/) if you want to learn more about the method!
|
48 |
-
Note that this model is not intended for images of humans or faces, and is unlikely to work well for them.
|
49 |
-
'''
|
50 |
-
|
51 |
-
_ARTICLE = 'See uses.md'
|
52 |
-
|
53 |
-
|
54 |
-
def load_model_from_config(config, ckpt, device, verbose=False):
|
55 |
-
print(f'Loading model from {ckpt}')
|
56 |
-
pl_sd = torch.load(ckpt, map_location=device)
|
57 |
-
if 'global_step' in pl_sd:
|
58 |
-
print(f'Global Step: {pl_sd["global_step"]}')
|
59 |
-
sd = pl_sd['state_dict']
|
60 |
-
model = instantiate_from_config(config.model)
|
61 |
-
m, u = model.load_state_dict(sd, strict=False)
|
62 |
-
if len(m) > 0 and verbose:
|
63 |
-
print('missing keys:')
|
64 |
-
print(m)
|
65 |
-
if len(u) > 0 and verbose:
|
66 |
-
print('unexpected keys:')
|
67 |
-
print(u)
|
68 |
-
|
69 |
-
model.to(device)
|
70 |
-
model.eval()
|
71 |
-
return model
|
72 |
-
|
73 |
-
|
74 |
-
@torch.no_grad()
|
75 |
-
def sample_model(input_im, model, sampler, precision, h, w, ddim_steps, n_samples, scale,
|
76 |
-
ddim_eta, x, y, z):
|
77 |
-
precision_scope = autocast if precision == 'autocast' else nullcontext
|
78 |
-
with precision_scope('cuda'):
|
79 |
-
with model.ema_scope():
|
80 |
-
c = model.get_learned_conditioning(input_im).tile(n_samples, 1, 1)
|
81 |
-
T = torch.tensor([math.radians(x), math.sin(
|
82 |
-
math.radians(y)), math.cos(math.radians(y)), z])
|
83 |
-
T = T[None, None, :].repeat(n_samples, 1, 1).to(c.device)
|
84 |
-
c = torch.cat([c, T], dim=-1)
|
85 |
-
c = model.cc_projection(c)
|
86 |
-
cond = {}
|
87 |
-
cond['c_crossattn'] = [c]
|
88 |
-
c_concat = model.encode_first_stage((input_im.to(c.device))).mode().detach()
|
89 |
-
cond['c_concat'] = [model.encode_first_stage((input_im.to(c.device))).mode().detach()
|
90 |
-
.repeat(n_samples, 1, 1, 1)]
|
91 |
-
if scale != 1.0:
|
92 |
-
uc = {}
|
93 |
-
uc['c_concat'] = [torch.zeros(n_samples, 4, h // 8, w // 8).to(c.device)]
|
94 |
-
uc['c_crossattn'] = [torch.zeros_like(c).to(c.device)]
|
95 |
-
else:
|
96 |
-
uc = None
|
97 |
-
|
98 |
-
shape = [4, h // 8, w // 8]
|
99 |
-
samples_ddim, _ = sampler.sample(S=ddim_steps,
|
100 |
-
conditioning=cond,
|
101 |
-
batch_size=n_samples,
|
102 |
-
shape=shape,
|
103 |
-
verbose=False,
|
104 |
-
unconditional_guidance_scale=scale,
|
105 |
-
unconditional_conditioning=uc,
|
106 |
-
eta=ddim_eta,
|
107 |
-
x_T=None)
|
108 |
-
print(samples_ddim.shape)
|
109 |
-
# samples_ddim = torch.nn.functional.interpolate(samples_ddim, 64, mode='nearest', antialias=False)
|
110 |
-
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
111 |
-
return torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0).cpu()
|
112 |
-
|
113 |
-
|
114 |
-
class CameraVisualizer:
|
115 |
-
def __init__(self, gradio_plot):
|
116 |
-
self._gradio_plot = gradio_plot
|
117 |
-
self._fig = None
|
118 |
-
self._polar = 0.0
|
119 |
-
self._azimuth = 0.0
|
120 |
-
self._radius = 0.0
|
121 |
-
self._raw_image = None
|
122 |
-
self._8bit_image = None
|
123 |
-
self._image_colorscale = None
|
124 |
-
|
125 |
-
def polar_change(self, value):
|
126 |
-
self._polar = value
|
127 |
-
# return self.update_figure()
|
128 |
-
|
129 |
-
def azimuth_change(self, value):
|
130 |
-
self._azimuth = value
|
131 |
-
# return self.update_figure()
|
132 |
-
|
133 |
-
def radius_change(self, value):
|
134 |
-
self._radius = value
|
135 |
-
# return self.update_figure()
|
136 |
-
|
137 |
-
def encode_image(self, raw_image):
|
138 |
-
'''
|
139 |
-
:param raw_image (H, W, 3) array of uint8 in [0, 255].
|
140 |
-
'''
|
141 |
-
# https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
|
142 |
-
|
143 |
-
dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
|
144 |
-
idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
|
145 |
-
|
146 |
-
self._raw_image = raw_image
|
147 |
-
self._8bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
|
148 |
-
# self._8bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
|
149 |
-
# 'P', palette='WEB', dither=None)
|
150 |
-
self._image_colorscale = [
|
151 |
-
[i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
|
152 |
-
|
153 |
-
# return self.update_figure()
|
154 |
-
|
155 |
-
def update_figure(self):
|
156 |
-
fig = go.Figure()
|
157 |
-
|
158 |
-
if self._raw_image is not None:
|
159 |
-
(H, W, C) = self._raw_image.shape
|
160 |
-
|
161 |
-
x = np.zeros((H, W))
|
162 |
-
(y, z) = np.meshgrid(np.linspace(-1.0, 1.0, W), np.linspace(1.0, -1.0, H) * H / W)
|
163 |
-
print('x:', lo(x))
|
164 |
-
print('y:', lo(y))
|
165 |
-
print('z:', lo(z))
|
166 |
-
|
167 |
-
fig.add_trace(go.Surface(
|
168 |
-
x=x, y=y, z=z,
|
169 |
-
surfacecolor=self._8bit_image,
|
170 |
-
cmin=0,
|
171 |
-
cmax=255,
|
172 |
-
colorscale=self._image_colorscale,
|
173 |
-
showscale=False,
|
174 |
-
lighting_diffuse=1.0,
|
175 |
-
lighting_ambient=1.0,
|
176 |
-
lighting_fresnel=1.0,
|
177 |
-
lighting_roughness=1.0,
|
178 |
-
lighting_specular=0.3))
|
179 |
-
|
180 |
-
scene_bounds = 3.5
|
181 |
-
base_radius = 2.5
|
182 |
-
zoom_scale = 1.5 # Note that input radius offset is in [-0.5, 0.5].
|
183 |
-
fov_deg = 50.0
|
184 |
-
edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
|
185 |
-
|
186 |
-
input_cone = calc_cam_cone_pts_3d(
|
187 |
-
0.0, 0.0, base_radius, fov_deg) # (5, 3).
|
188 |
-
output_cone = calc_cam_cone_pts_3d(
|
189 |
-
self._polar, self._azimuth, base_radius + self._radius * zoom_scale, fov_deg) # (5, 3).
|
190 |
-
# print('input_cone:', lo(input_cone).v)
|
191 |
-
# print('output_cone:', lo(output_cone).v)
|
192 |
-
|
193 |
-
for (cone, clr, legend) in [(input_cone, 'green', 'Input view'),
|
194 |
-
(output_cone, 'blue', 'Target view')]:
|
195 |
-
|
196 |
-
for (i, edge) in enumerate(edges):
|
197 |
-
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
|
198 |
-
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
|
199 |
-
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
|
200 |
-
fig.add_trace(go.Scatter3d(
|
201 |
-
x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
|
202 |
-
line=dict(color=clr, width=3),
|
203 |
-
name=legend, showlegend=(i == 0)))
|
204 |
-
# text=(legend if i == 0 else None),
|
205 |
-
# textposition='bottom center'))
|
206 |
-
# hoverinfo='text',
|
207 |
-
# hovertext='hovertext'))
|
208 |
-
|
209 |
-
# Add label.
|
210 |
-
if cone[0, 2] <= base_radius / 2.0:
|
211 |
-
fig.add_trace(go.Scatter3d(
|
212 |
-
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
|
213 |
-
mode='text', text=legend, textposition='bottom center'))
|
214 |
-
else:
|
215 |
-
fig.add_trace(go.Scatter3d(
|
216 |
-
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
|
217 |
-
mode='text', text=legend, textposition='top center'))
|
218 |
-
|
219 |
-
# look at center of scene
|
220 |
-
fig.update_layout(
|
221 |
-
# width=640,
|
222 |
-
# height=480,
|
223 |
-
# height=400,
|
224 |
-
height=360,
|
225 |
-
autosize=True,
|
226 |
-
hovermode=False,
|
227 |
-
margin=go.layout.Margin(l=0, r=0, b=0, t=0),
|
228 |
-
showlegend=True,
|
229 |
-
legend=dict(
|
230 |
-
yanchor='bottom',
|
231 |
-
y=0.01,
|
232 |
-
xanchor='right',
|
233 |
-
x=0.99,
|
234 |
-
),
|
235 |
-
scene=dict(
|
236 |
-
aspectmode='manual',
|
237 |
-
aspectratio=dict(x=1, y=1, z=1.0),
|
238 |
-
camera=dict(
|
239 |
-
eye=dict(x=base_radius - 1.6, y=0.0, z=0.6),
|
240 |
-
center=dict(x=0.0, y=0.0, z=0.0),
|
241 |
-
up=dict(x=0.0, y=0.0, z=1.0)),
|
242 |
-
xaxis_title='',
|
243 |
-
yaxis_title='',
|
244 |
-
zaxis_title='',
|
245 |
-
xaxis=dict(
|
246 |
-
range=[-scene_bounds, scene_bounds],
|
247 |
-
showticklabels=False,
|
248 |
-
showgrid=True,
|
249 |
-
zeroline=False,
|
250 |
-
showbackground=True,
|
251 |
-
showspikes=False,
|
252 |
-
showline=False,
|
253 |
-
ticks=''),
|
254 |
-
yaxis=dict(
|
255 |
-
range=[-scene_bounds, scene_bounds],
|
256 |
-
showticklabels=False,
|
257 |
-
showgrid=True,
|
258 |
-
zeroline=False,
|
259 |
-
showbackground=True,
|
260 |
-
showspikes=False,
|
261 |
-
showline=False,
|
262 |
-
ticks=''),
|
263 |
-
zaxis=dict(
|
264 |
-
range=[-scene_bounds, scene_bounds],
|
265 |
-
showticklabels=False,
|
266 |
-
showgrid=True,
|
267 |
-
zeroline=False,
|
268 |
-
showbackground=True,
|
269 |
-
showspikes=False,
|
270 |
-
showline=False,
|
271 |
-
ticks='')))
|
272 |
-
|
273 |
-
self._fig = fig
|
274 |
-
return fig
|
275 |
-
|
276 |
-
|
277 |
-
def preprocess_image(models, input_im, preprocess):
|
278 |
-
'''
|
279 |
-
:param input_im (PIL Image).
|
280 |
-
:return input_im (H, W, 3) array in [0, 1].
|
281 |
-
'''
|
282 |
-
|
283 |
-
print('old input_im:', input_im.size)
|
284 |
-
start_time = time.time()
|
285 |
-
|
286 |
-
if preprocess:
|
287 |
-
input_im = load_and_preprocess(models['carvekit'], input_im)
|
288 |
-
input_im = (input_im / 255.0).astype(np.float32)
|
289 |
-
# (H, W, 3) array in [0, 1].
|
290 |
-
|
291 |
-
else:
|
292 |
-
input_im = input_im.resize([256, 256], Image.Resampling.LANCZOS)
|
293 |
-
input_im = np.asarray(input_im, dtype=np.float32) / 255.0
|
294 |
-
# (H, W, 4) array in [0, 1].
|
295 |
-
|
296 |
-
# old method: thresholding background, very important
|
297 |
-
# input_im[input_im[:, :, -1] <= 0.9] = [1., 1., 1., 1.]
|
298 |
-
|
299 |
-
# new method: apply correct method of compositing to avoid sudden transitions / thresholding
|
300 |
-
# (smoothly transition foreground to white background based on alpha values)
|
301 |
-
alpha = input_im[:, :, 3:4]
|
302 |
-
white_im = np.ones_like(input_im)
|
303 |
-
input_im = alpha * input_im + (1.0 - alpha) * white_im
|
304 |
-
|
305 |
-
input_im = input_im[:, :, 0:3]
|
306 |
-
# (H, W, 3) array in [0, 1].
|
307 |
-
|
308 |
-
print(f'Infer foreground mask (preprocess_image) took {time.time() - start_time:.3f}s.')
|
309 |
-
print('new input_im:', lo(input_im))
|
310 |
-
|
311 |
-
return input_im
|
312 |
-
|
313 |
-
|
314 |
-
def main_run(models, device, cam_vis, return_what,
|
315 |
-
x=0.0, y=0.0, z=0.0,
|
316 |
-
raw_im=None, preprocess=True,
|
317 |
-
scale=3.0, n_samples=4, ddim_steps=50, ddim_eta=1.0,
|
318 |
-
precision='fp32', h=256, w=256):
|
319 |
-
'''
|
320 |
-
:param raw_im (PIL Image).
|
321 |
-
'''
|
322 |
-
|
323 |
-
safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
|
324 |
-
(image, has_nsfw_concept) = models['nsfw'](
|
325 |
-
images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
|
326 |
-
print('has_nsfw_concept:', has_nsfw_concept)
|
327 |
-
if np.any(has_nsfw_concept):
|
328 |
-
print('NSFW content detected.')
|
329 |
-
to_return = [None] * 10
|
330 |
-
description = ('### <span style="color:red"> Unfortunately, '
|
331 |
-
'potential NSFW content was detected, '
|
332 |
-
'which is not supported by our model. '
|
333 |
-
'Please try again with a different image. </span>')
|
334 |
-
if 'angles' in return_what:
|
335 |
-
to_return[0] = 0.0
|
336 |
-
to_return[1] = 0.0
|
337 |
-
to_return[2] = 0.0
|
338 |
-
to_return[3] = description
|
339 |
-
else:
|
340 |
-
to_return[0] = description
|
341 |
-
return to_return
|
342 |
-
|
343 |
-
else:
|
344 |
-
print('Safety check passed.')
|
345 |
-
|
346 |
-
input_im = preprocess_image(models, raw_im, preprocess)
|
347 |
-
|
348 |
-
# if np.random.rand() < 0.3:
|
349 |
-
# description = ('Unfortunately, a human, a face, or potential NSFW content was detected, '
|
350 |
-
# 'which is not supported by our model.')
|
351 |
-
# if vis_only:
|
352 |
-
# return (None, None, description)
|
353 |
-
# else:
|
354 |
-
# return (None, None, None, description)
|
355 |
-
|
356 |
-
show_in_im1 = (input_im * 255.0).astype(np.uint8)
|
357 |
-
show_in_im2 = Image.fromarray(show_in_im1)
|
358 |
-
|
359 |
-
if 'rand' in return_what:
|
360 |
-
x = int(np.round(np.arcsin(np.random.uniform(-1.0, 1.0)) * 160.0 / np.pi)) # [-80, 80].
|
361 |
-
y = int(np.round(np.random.uniform(-150.0, 150.0)))
|
362 |
-
z = 0.0
|
363 |
-
|
364 |
-
cam_vis.polar_change(x)
|
365 |
-
cam_vis.azimuth_change(y)
|
366 |
-
cam_vis.radius_change(z)
|
367 |
-
cam_vis.encode_image(show_in_im1)
|
368 |
-
new_fig = cam_vis.update_figure()
|
369 |
-
|
370 |
-
if 'vis' in return_what:
|
371 |
-
description = ('The viewpoints are visualized on the top right. '
|
372 |
-
'Click Run Generation to update the results on the bottom right.')
|
373 |
-
|
374 |
-
if 'angles' in return_what:
|
375 |
-
return (x, y, z, description, new_fig, show_in_im2)
|
376 |
-
else:
|
377 |
-
return (description, new_fig, show_in_im2)
|
378 |
-
|
379 |
-
elif 'gen' in return_what:
|
380 |
-
input_im = transforms.ToTensor()(input_im).unsqueeze(0).to(device)
|
381 |
-
input_im = input_im * 2 - 1
|
382 |
-
input_im = transforms.functional.resize(input_im, [h, w])
|
383 |
-
|
384 |
-
sampler = DDIMSampler(models['turncam'])
|
385 |
-
# used_x = -x # NOTE: Polar makes more sense in Basile's opinion this way!
|
386 |
-
used_x = x # NOTE: Set this way for consistency.
|
387 |
-
x_samples_ddim = sample_model(input_im, models['turncam'], sampler, precision, h, w,
|
388 |
-
ddim_steps, n_samples, scale, ddim_eta, used_x, y, z)
|
389 |
-
|
390 |
-
output_ims = []
|
391 |
-
for x_sample in x_samples_ddim:
|
392 |
-
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
393 |
-
output_ims.append(Image.fromarray(x_sample.astype(np.uint8)))
|
394 |
-
|
395 |
-
description = None
|
396 |
-
|
397 |
-
if 'angles' in return_what:
|
398 |
-
return (x, y, z, description, new_fig, show_in_im2, output_ims)
|
399 |
-
else:
|
400 |
-
return (description, new_fig, show_in_im2, output_ims)
|
401 |
-
|
402 |
-
|
403 |
-
def calc_cam_cone_pts_3d(polar_deg, azimuth_deg, radius_m, fov_deg):
|
404 |
-
'''
|
405 |
-
:param polar_deg (float).
|
406 |
-
:param azimuth_deg (float).
|
407 |
-
:param radius_m (float).
|
408 |
-
:param fov_deg (float).
|
409 |
-
:return (5, 3) array of float with (x, y, z).
|
410 |
-
'''
|
411 |
-
polar_rad = np.deg2rad(polar_deg)
|
412 |
-
azimuth_rad = np.deg2rad(azimuth_deg)
|
413 |
-
fov_rad = np.deg2rad(fov_deg)
|
414 |
-
polar_rad = -polar_rad # NOTE: Inverse of how used_x relates to x.
|
415 |
-
|
416 |
-
# Camera pose center:
|
417 |
-
cam_x = radius_m * np.cos(azimuth_rad) * np.cos(polar_rad)
|
418 |
-
cam_y = radius_m * np.sin(azimuth_rad) * np.cos(polar_rad)
|
419 |
-
cam_z = radius_m * np.sin(polar_rad)
|
420 |
-
|
421 |
-
# Obtain four corners of camera frustum, assuming it is looking at origin.
|
422 |
-
# First, obtain camera extrinsics (rotation matrix only):
|
423 |
-
camera_R = np.array([[np.cos(azimuth_rad) * np.cos(polar_rad),
|
424 |
-
-np.sin(azimuth_rad),
|
425 |
-
-np.cos(azimuth_rad) * np.sin(polar_rad)],
|
426 |
-
[np.sin(azimuth_rad) * np.cos(polar_rad),
|
427 |
-
np.cos(azimuth_rad),
|
428 |
-
-np.sin(azimuth_rad) * np.sin(polar_rad)],
|
429 |
-
[np.sin(polar_rad),
|
430 |
-
0.0,
|
431 |
-
np.cos(polar_rad)]])
|
432 |
-
# print('camera_R:', lo(camera_R).v)
|
433 |
-
|
434 |
-
# Multiply by corners in camera space to obtain go to space:
|
435 |
-
corn1 = [-1.0, np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
|
436 |
-
corn2 = [-1.0, -np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
|
437 |
-
corn3 = [-1.0, -np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
|
438 |
-
corn4 = [-1.0, np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
|
439 |
-
corn1 = np.dot(camera_R, corn1)
|
440 |
-
corn2 = np.dot(camera_R, corn2)
|
441 |
-
corn3 = np.dot(camera_R, corn3)
|
442 |
-
corn4 = np.dot(camera_R, corn4)
|
443 |
-
|
444 |
-
# Now attach as offset to actual 3D camera position:
|
445 |
-
corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2)
|
446 |
-
corn_x1 = cam_x + corn1[0]
|
447 |
-
corn_y1 = cam_y + corn1[1]
|
448 |
-
corn_z1 = cam_z + corn1[2]
|
449 |
-
corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2)
|
450 |
-
corn_x2 = cam_x + corn2[0]
|
451 |
-
corn_y2 = cam_y + corn2[1]
|
452 |
-
corn_z2 = cam_z + corn2[2]
|
453 |
-
corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2)
|
454 |
-
corn_x3 = cam_x + corn3[0]
|
455 |
-
corn_y3 = cam_y + corn3[1]
|
456 |
-
corn_z3 = cam_z + corn3[2]
|
457 |
-
corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2)
|
458 |
-
corn_x4 = cam_x + corn4[0]
|
459 |
-
corn_y4 = cam_y + corn4[1]
|
460 |
-
corn_z4 = cam_z + corn4[2]
|
461 |
-
|
462 |
-
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
|
463 |
-
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
|
464 |
-
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
|
465 |
-
|
466 |
-
return np.array([xs, ys, zs]).T
|
467 |
-
|
468 |
-
|
469 |
-
def run_demo(
|
470 |
-
device_idx=_GPU_INDEX,
|
471 |
-
ckpt='105000.ckpt',
|
472 |
-
config='configs/sd-objaverse-finetune-c_concat-256.yaml'):
|
473 |
-
|
474 |
-
print('sys.argv:', sys.argv)
|
475 |
-
if len(sys.argv) > 1:
|
476 |
-
print('old device_idx:', device_idx)
|
477 |
-
device_idx = int(sys.argv[1])
|
478 |
-
print('new device_idx:', device_idx)
|
479 |
-
|
480 |
-
device = f'cuda:{device_idx}'
|
481 |
-
config = OmegaConf.load(config)
|
482 |
-
|
483 |
-
# Instantiate all models beforehand for efficiency.
|
484 |
-
models = dict()
|
485 |
-
print('Instantiating LatentDiffusion...')
|
486 |
-
models['turncam'] = load_model_from_config(config, ckpt, device=device)
|
487 |
-
print('Instantiating Carvekit HiInterface...')
|
488 |
-
models['carvekit'] = create_carvekit_interface()
|
489 |
-
print('Instantiating StableDiffusionSafetyChecker...')
|
490 |
-
models['nsfw'] = StableDiffusionSafetyChecker.from_pretrained(
|
491 |
-
'CompVis/stable-diffusion-safety-checker').to(device)
|
492 |
-
print('Instantiating AutoFeatureExtractor...')
|
493 |
-
models['clip_fe'] = AutoFeatureExtractor.from_pretrained(
|
494 |
-
'CompVis/stable-diffusion-safety-checker')
|
495 |
-
|
496 |
-
# Reduce NSFW false positives.
|
497 |
-
# NOTE: At the time of writing, and for diffusers 0.12.1, the default parameters are:
|
498 |
-
# models['nsfw'].concept_embeds_weights:
|
499 |
-
# [0.1800, 0.1900, 0.2060, 0.2100, 0.1950, 0.1900, 0.1940, 0.1900, 0.1900, 0.2200, 0.1900,
|
500 |
-
# 0.1900, 0.1950, 0.1984, 0.2100, 0.2140, 0.2000].
|
501 |
-
# models['nsfw'].special_care_embeds_weights:
|
502 |
-
# [0.1950, 0.2000, 0.2200].
|
503 |
-
# We multiply all by some factor > 1 to make them less likely to be triggered.
|
504 |
-
models['nsfw'].concept_embeds_weights *= 1.07
|
505 |
-
models['nsfw'].special_care_embeds_weights *= 1.07
|
506 |
-
|
507 |
-
with open('instructions.md', 'r') as f:
|
508 |
-
article = f.read()
|
509 |
-
|
510 |
-
# Compose demo layout & data flow.
|
511 |
-
demo = gr.Blocks(title=_TITLE)
|
512 |
-
|
513 |
-
with demo:
|
514 |
-
gr.Markdown('# ' + _TITLE)
|
515 |
-
gr.Markdown(_DESCRIPTION)
|
516 |
-
|
517 |
-
with gr.Row():
|
518 |
-
with gr.Column(scale=0.9, variant='panel'):
|
519 |
-
|
520 |
-
image_block = gr.Image(type='pil', image_mode='RGBA',
|
521 |
-
label='Input image of single object')
|
522 |
-
preprocess_chk = gr.Checkbox(
|
523 |
-
True, label='Preprocess image automatically (remove background and recenter object)')
|
524 |
-
# info='If enabled, the uploaded image will be preprocessed to remove the background and recenter the object by cropping and/or padding as necessary. '
|
525 |
-
# 'If disabled, the image will be used as-is, *BUT* a fully transparent or white background is required.'),
|
526 |
-
|
527 |
-
gr.Markdown('*Try camera position presets:*')
|
528 |
-
with gr.Row():
|
529 |
-
left_btn = gr.Button('View from the Left', variant='primary')
|
530 |
-
above_btn = gr.Button('View from Above', variant='primary')
|
531 |
-
right_btn = gr.Button('View from the Right', variant='primary')
|
532 |
-
with gr.Row():
|
533 |
-
random_btn = gr.Button('Random Rotation', variant='primary')
|
534 |
-
below_btn = gr.Button('View from Below', variant='primary')
|
535 |
-
behind_btn = gr.Button('View from Behind', variant='primary')
|
536 |
-
|
537 |
-
gr.Markdown('*Control camera position manually:*')
|
538 |
-
polar_slider = gr.Slider(
|
539 |
-
-90, 90, value=0, step=5, label='Polar angle (vertical rotation in degrees)')
|
540 |
-
# info='Positive values move the camera down, while negative values move the camera up.')
|
541 |
-
azimuth_slider = gr.Slider(
|
542 |
-
-180, 180, value=0, step=5, label='Azimuth angle (horizontal rotation in degrees)')
|
543 |
-
# info='Positive values move the camera right, while negative values move the camera left.')
|
544 |
-
radius_slider = gr.Slider(
|
545 |
-
-0.5, 0.5, value=0.0, step=0.1, label='Zoom (relative distance from center)')
|
546 |
-
# info='Positive values move the camera further away, while negative values move the camera closer.')
|
547 |
-
|
548 |
-
samples_slider = gr.Slider(1, 8, value=4, step=1,
|
549 |
-
label='Number of samples to generate')
|
550 |
-
|
551 |
-
with gr.Accordion('Advanced options', open=False):
|
552 |
-
scale_slider = gr.Slider(0, 30, value=3, step=1,
|
553 |
-
label='Diffusion guidance scale')
|
554 |
-
steps_slider = gr.Slider(5, 200, value=75, step=5,
|
555 |
-
label='Number of diffusion inference steps')
|
556 |
-
|
557 |
-
with gr.Row():
|
558 |
-
vis_btn = gr.Button('Visualize Angles', variant='secondary')
|
559 |
-
run_btn = gr.Button('Run Generation', variant='primary')
|
560 |
-
|
561 |
-
desc_output = gr.Markdown('The results will appear on the right.', visible=_SHOW_DESC)
|
562 |
-
|
563 |
-
with gr.Column(scale=1.1, variant='panel'):
|
564 |
-
|
565 |
-
vis_output = gr.Plot(
|
566 |
-
label='Relationship between input (green) and output (blue) camera poses')
|
567 |
-
|
568 |
-
gen_output = gr.Gallery(label='Generated images from specified new viewpoint')
|
569 |
-
gen_output.style(grid=2)
|
570 |
-
|
571 |
-
preproc_output = gr.Image(type='pil', image_mode='RGB',
|
572 |
-
label='Preprocessed input image', visible=_SHOW_INTERMEDIATE)
|
573 |
-
|
574 |
-
gr.Markdown(article)
|
575 |
-
|
576 |
-
# NOTE: I am forced to update vis_output for these preset buttons,
|
577 |
-
# because otherwise the gradio plot always resets the plotly 3D viewpoint for some reason,
|
578 |
-
# which might confuse the user into thinking that the plot has been updated too.
|
579 |
-
|
580 |
-
# OLD 1:
|
581 |
-
# left_btn.click(fn=lambda: [0.0, -90.0], #, 0.0],
|
582 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider]), #], radius_slider])
|
583 |
-
# above_btn.click(fn=lambda: [90.0, 0.0], #, 0.0],
|
584 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider]), #, radius_slider])
|
585 |
-
# right_btn.click(fn=lambda: [0.0, 90.0], #, 0.0],
|
586 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider]), #, radius_slider])
|
587 |
-
# random_btn.click(fn=lambda: [int(np.round(np.random.uniform(-60.0, 60.0))),
|
588 |
-
# int(np.round(np.random.uniform(-150.0, 150.0)))], #, 0.0],
|
589 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider]), #, radius_slider])
|
590 |
-
# below_btn.click(fn=lambda: [-90.0, 0.0], #, 0.0],
|
591 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider]), #, radius_slider])
|
592 |
-
# behind_btn.click(fn=lambda: [0.0, 180.0], #, 0.0],
|
593 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider]), #, radius_slider])
|
594 |
-
|
595 |
-
# OLD 2:
|
596 |
-
# preset_text = ('You have selected a preset target camera view. '
|
597 |
-
# 'Now click Run Generation to update the results!')
|
598 |
-
|
599 |
-
# left_btn.click(fn=lambda: [0.0, -90.0, None, preset_text],
|
600 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
601 |
-
# above_btn.click(fn=lambda: [90.0, 0.0, None, preset_text],
|
602 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
603 |
-
# right_btn.click(fn=lambda: [0.0, 90.0, None, preset_text],
|
604 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
605 |
-
# random_btn.click(fn=lambda: [int(np.round(np.random.uniform(-60.0, 60.0))),
|
606 |
-
# int(np.round(np.random.uniform(-150.0, 150.0))),
|
607 |
-
# None, preset_text],
|
608 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
609 |
-
# below_btn.click(fn=lambda: [-90.0, 0.0, None, preset_text],
|
610 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
611 |
-
# behind_btn.click(fn=lambda: [0.0, 180.0, None, preset_text],
|
612 |
-
# inputs=[], outputs=[polar_slider, azimuth_slider, vis_output, desc_output])
|
613 |
-
|
614 |
-
# OLD 3 (does not work at all):
|
615 |
-
# def a():
|
616 |
-
# polar_slider.value = 77.7
|
617 |
-
# polar_slider.postprocess(77.7)
|
618 |
-
# print('testa')
|
619 |
-
# left_btn.click(fn=a)
|
620 |
-
|
621 |
-
cam_vis = CameraVisualizer(vis_output)
|
622 |
-
|
623 |
-
vis_btn.click(fn=partial(main_run, models, device, cam_vis, 'vis'),
|
624 |
-
inputs=[polar_slider, azimuth_slider, radius_slider,
|
625 |
-
image_block, preprocess_chk],
|
626 |
-
outputs=[desc_output, vis_output, preproc_output])
|
627 |
-
|
628 |
-
run_btn.click(fn=partial(main_run, models, device, cam_vis, 'gen'),
|
629 |
-
inputs=[polar_slider, azimuth_slider, radius_slider,
|
630 |
-
image_block, preprocess_chk,
|
631 |
-
scale_slider, samples_slider, steps_slider],
|
632 |
-
outputs=[desc_output, vis_output, preproc_output, gen_output])
|
633 |
-
|
634 |
-
# NEW:
|
635 |
-
preset_inputs = [image_block, preprocess_chk,
|
636 |
-
scale_slider, samples_slider, steps_slider]
|
637 |
-
preset_outputs = [polar_slider, azimuth_slider, radius_slider,
|
638 |
-
desc_output, vis_output, preproc_output, gen_output]
|
639 |
-
left_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
|
640 |
-
0.0, -90.0, 0.0),
|
641 |
-
inputs=preset_inputs, outputs=preset_outputs)
|
642 |
-
above_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
|
643 |
-
-90.0, 0.0, 0.0),
|
644 |
-
inputs=preset_inputs, outputs=preset_outputs)
|
645 |
-
right_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
|
646 |
-
0.0, 90.0, 0.0),
|
647 |
-
inputs=preset_inputs, outputs=preset_outputs)
|
648 |
-
random_btn.click(fn=partial(main_run, models, device, cam_vis, 'rand_angles_gen',
|
649 |
-
-1.0, -1.0, -1.0),
|
650 |
-
inputs=preset_inputs, outputs=preset_outputs)
|
651 |
-
below_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
|
652 |
-
90.0, 0.0, 0.0),
|
653 |
-
inputs=preset_inputs, outputs=preset_outputs)
|
654 |
-
behind_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
|
655 |
-
0.0, 180.0, 0.0),
|
656 |
-
inputs=preset_inputs, outputs=preset_outputs)
|
657 |
-
|
658 |
-
demo.launch(enable_queue=True, share=True)
|
659 |
-
|
660 |
-
|
661 |
-
if __name__ == '__main__':
|
662 |
-
|
663 |
-
fire.Fire(run_demo)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
taming-transformers
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 3ba01b241669f5ade541ce990f7650a3b8f65318
|