File size: 8,134 Bytes
96094ed
 
 
 
 
 
 
 
31eb4a6
 
 
 
 
0366bb6
96094ed
 
 
 
930b057
 
b71e7f7
 
7833101
359cd26
 
930b057
 
 
 
6f7290d
930b057
 
9e064db
930b057
 
 
b71e7f7
 
 
930b057
 
6f7290d
f251112
 
 
6f7290d
0366bb6
4e94ced
930b057
f251112
96094ed
b3965f2
 
 
96094ed
b3965f2
 
 
 
 
 
 
f71af43
e6561b0
96094ed
e6561b0
96094ed
 
 
930b057
 
 
 
e4f5d4b
2fe6565
f251112
 
 
2fe6565
f251112
 
 
96094ed
6747ea1
930b057
 
 
 
 
 
 
4dbd274
930b057
4dbd274
 
 
 
 
 
 
 
 
 
 
f251112
930b057
6747ea1
96094ed
 
e6561b0
 
 
 
 
 
 
 
 
 
 
96094ed
e6561b0
 
 
96094ed
 
e6561b0
96094ed
930b057
 
1bef11b
930b057
 
 
 
f251112
e6561b0
1bef11b
f251112
 
 
e6561b0
96094ed
6747ea1
f251112
 
6747ea1
930b057
b3965f2
 
 
 
e6561b0
b3965f2
e6561b0
b3965f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6561b0
 
930b057
 
 
 
 
 
 
 
 
96094ed
930b057
f251112
96094ed
5b1172f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch

from transformers import pipeline

import numpy as np
import gradio as gr

def _grab_best_device(use_gpu=True):
    if torch.cuda.device_count() > 0 and use_gpu:
        device = 0 #"cuda"
    else:
        device = -1 #"cpu"
    #device = 0 if torch.cuda.is_available() else -1
    
    return device

device = _grab_best_device()

default_model_per_language = {
    "spanish": "facebook/mms-tts-spa",
    "tamil": "facebook/mms-tts-tam",
    "gujarati": "facebook/mms-tts-guj",
    "marathi": "facebook/mms-tts-mar",
    #"english": "kakao-enterprise/vits-ljs",
    "english": "facebook/mms-tts-eng",
}

models_per_language = {
    "english": [
        "ylacombe/vits_ljs_midlands_male_monospeaker",
    ],
    "spanish": [
        "ylacombe/mms-spa-finetuned-chilean-monospeaker",       
    ],
    "tamil": [
        "ylacombe/mms-tam-finetuned-monospeaker",
    ],
    "gujarati" : ["ylacombe/mms-guj-finetuned-monospeaker"],
    "marathi": ["ylacombe/mms-mar-finetuned-monospeaker"]
}

HUB_PATH = "ylacombe/vits_ljs_midlands_male_monospeaker"


pipe_dict = {
    "current_model": "ylacombe/vits_ljs_midlands_male_monospeaker",
    "pipe":  pipeline("text-to-speech", model=HUB_PATH, device=device),
    "original_pipe": pipeline("text-to-speech", model=default_model_per_language["english"], device=device),
    "language": "english",
}

title =      """
# Explore MMS finetuning
## Or how to access truely multilingual TTS

Massively Multilingual Speech (MMS) models are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits).

Meta's [MMS](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html),
and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts).
    
Coupled with the right data and the right training recipe, you can get an excellent finetuned version of every MMS checkpoints in **20 minutes** with as little as **80 to 150 samples**.            

Training recipe available in this [github repository](https://github.com/ylacombe/finetune-hf-vits)!
            """

max_speakers = 15


# Inference
def generate_audio(text, model_id, language):

    if pipe_dict["language"] != language:
        gr.Warning(f"Language has changed - loading new default model: {default_model_per_language[language]}")
        pipe_dict["language"] = language
        pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=device)
    
    if pipe_dict["current_model"] != model_id:
        gr.Warning("Model has changed - loading new model")
        pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=device)
        pipe_dict["current_model"] = model_id

    num_speakers = pipe_dict["pipe"].model.config.num_speakers

    out = []
    # first generate original model result
    output = pipe_dict["original_pipe"](text)
    output =  gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Non finetuned model prediction {default_model_per_language[language]}", show_label=True,
                               visible=True)
    out.append(output)
    
    
    if num_speakers>1:
        for i in range(min(num_speakers, max_speakers - 1)):
            forward_params = {"speaker_id": i}
            output = pipe_dict["pipe"](text, forward_params=forward_params)
            
            output =  gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True,
                               visible=True)
            out.append(output)
        out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers))
    else:
        output = pipe_dict["pipe"](text)
        output =  gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label="Generated Audio - Mono speaker", show_label=True,
                               visible=True)
        out.append(output)
        out.extend([gr.Audio(visible=False)]*(max_speakers-2))
    return out


css = """
#container{
    margin: 0 auto;
    max-width: 80rem;
}
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
"""
# Gradio blocks demo    
with gr.Blocks(css=css) as demo_blocks:
    gr.Markdown(title, elem_id="intro")

    with gr.Row():
        with gr.Column():
            inp_text = gr.Textbox(label="Input Text", info="What sentence would you like to synthesise?")
            btn = gr.Button("Generate Audio!")
            language = gr.Dropdown(
                default_model_per_language.keys(),
                value = "spanish",
                label = "language",
                info = "Language that you want to test"
            )
            
            model_id = gr.Dropdown(
                    models_per_language["spanish"],
                    value="ylacombe/mms-spa-finetuned-chilean-monospeaker", 
                    label="Model", 
                    info="Model you want to test",
                    )
                
        with gr.Column():
            outputs = []
            for i in range(max_speakers):
                out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
                outputs.append(out_audio)

    with gr.Accordion("Datasets and models details", open=False):
        gr.Markdown("""
        
For each language, we used 100 to 150 samples of a single speaker to finetune the model.

### Spanish

* **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa).
* **Datasets**:
    - [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish).

### Tamil

* **Model**: [Tamil MMS TTS](https://huggingface.co/facebook/mms-tts-tam).
* **Datasets**:
    - [Tamil TTS dataset](https://huggingface.co/datasets/ylacombe/google-tamil).

### Gujarati

* **Model**: [Gujarati MMS TTS](https://huggingface.co/facebook/mms-tts-guj).
* **Datasets**:
    - [Gujarati TTS dataset](https://huggingface.co/datasets/ylacombe/google-gujarati).

### Marathi

* **Model**: [Marathi MMS TTS](https://huggingface.co/facebook/mms-tts-mar).
* **Datasets**:
    - [Marathi TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-marathi).

### English

* **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs)
* **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs).

                    
                    """) 

    with gr.Accordion("Run VITS and MMS with transformers", open=False):
        gr.Markdown(
            """
        ```bash
        pip install transformers
        ```
        ```py
        from transformers import pipeline
        import scipy
        pipe = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=0)
        
        results = pipe("A cinematic shot of a baby racoon wearing an intricate italian priest robe")

        # write to a wav file
        scipy.io.wavfile.write("audio_vits.wav", rate=results["sampling_rate"], data=results["audio"].squeeze())
        ```
        """
        )


    language.change(lambda language: gr.Dropdown(
                    models_per_language[language],
                    value=models_per_language[language][0], 
                    label="Model", 
                    info="Model you want to test",
                    ),
                    language,
                    model_id
                   )
    
    btn.click(generate_audio, [inp_text, model_id, language], outputs)
    

demo_blocks.queue().launch()