Spaces:
Running
Running
File size: 7,215 Bytes
b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 02fdb50 b22f922 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from config import DEMO_TITLE, IS_SHARE, CV_EXT, EXT_TXT
from config import CHEAP_API_BASE, CHEAP_API_KEY, CHEAP_MODEL
from config import STRONG_API_BASE, STRONG_API_KEY, STRONG_MODEL
from util import is_valid_url
from util import mylogger
from util import stream_together
from taskNonAI import extract_url, file_to_html
from taskAI import TaskAI
## load data
from data_test import mock_jd, mock_cv
## ui
import gradio as gr
## dependency
from pypandoc.pandoc_download import download_pandoc
## std
import os
logger = mylogger(__name__,'%(asctime)s:%(levelname)s:%(message)s')
info = logger.info
def init():
os.system("shot-scraper install -b firefox")
download_pandoc()
def prepare_input(jd_info, cv_file: str, cv_text):
if jd_info:
if is_valid_url(jd_info):
jd = extract_url(jd_info)
else:
jd = jd_info
else:
jd = mock_jd
if cv_text:
cv = cv_text
elif cv_file:
if any([cv_file.endswith(ext) for ext in EXT_TXT]):
with open(cv_file, "r", encoding="utf8") as f:
cv = f.read()
else:
cv = file_to_html(cv_file)
else:
cv = mock_cv
return jd, cv
def run_refine(api_base, api_key, api_model, jd_info, cv_text):
jd,cv=jd_info,cv_text
cheapAPI = {"base": api_base, "key": api_key, "model": api_model}
taskAI = TaskAI(cheapAPI, temperature=0.2, max_tokens=2048) # max_tokens=2048
info("API initialized")
gen = (
taskAI.jd_preprocess(input=jd),
taskAI.cv_preprocess(input=cv),
)
info("tasks initialized")
result = [""] * 2
while 1:
stop: bool = True
for i in range(len(gen)):
try:
result[i] += next(gen[i]).delta
stop = False
except StopIteration:
# info(f"gen[{i}] exhausted")
pass
yield result
if stop:
info("tasks done")
break
def run_compose(api_base, api_key, api_model, min_jd, min_cv):
strongAPI = {"base": api_base, "key": api_key, "model": api_model}
taskAI = TaskAI(strongAPI, temperature=0.6, max_tokens=4000)
info("Composing letter with CoT ...")
result = ""
for response in taskAI.compose_letter_CoT(jd=min_jd, resume=min_cv):
result += response.delta
yield result
def finalize_letter_txt(api_base, api_key, api_model, debug_CoT, jd, cv):
cheapAPI = {"base": api_base, "key": api_key, "model": api_model}
taskAI = TaskAI(cheapAPI, temperature=0.2, max_tokens=2048)
info("Finalizing letter ...")
gen = stream_together(
taskAI.purify_letter(full_text=debug_CoT),
taskAI.get_jobapp_meta(JD=jd, CV=cv),
)
for result in gen:
yield result
with gr.Blocks(
title=DEMO_TITLE,
theme=gr.themes.Base(primary_hue="blue", secondary_hue="sky", neutral_hue="slate"),
) as app:
intro = f"""# {DEMO_TITLE}
> You provide job description and résumé. I write Cover letter for you!
Before you use, please fisrt setup API for 2 AI agents': Cheap AI and Strong AI.
"""
gr.Markdown(intro)
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("AI setup (OpenAI-compatible LLM API)", open=False):
gr.Markdown(
"**Cheap AI**, an honest format converter and refiner, extracts essential info from job description and résumé, to reduce subsequent cost on Strong AI."
)
with gr.Group():
cheap_base = gr.Textbox(
value=CHEAP_API_BASE, label="API BASE"
)
cheap_key = gr.Textbox(value=CHEAP_API_KEY, label="API key")
cheap_model = gr.Textbox(value=CHEAP_MODEL, label="Model ID")
gr.Markdown(
"---\n**Strong AI**, a thoughtful wordsmith, generates perfect cover letters to make both you and recruiters happy."
)
with gr.Group():
strong_base = gr.Textbox(
value=STRONG_API_BASE, label="API BASE"
)
strong_key = gr.Textbox(
value=STRONG_API_KEY, label="API key", type="password"
)
strong_model = gr.Textbox(value=STRONG_MODEL, label="Model ID")
with gr.Group():
gr.Markdown("## Employer - Job Description")
jd_info = gr.Textbox(
label="Job Description",
placeholder="Paste as Full Text (recommmend) or URL",
lines=5,
max_lines=10,
)
with gr.Group():
gr.Markdown("## Applicant - CV / Résumé")
with gr.Row():
cv_file = gr.File(
label="Allowed formats: " + " ".join(CV_EXT),
file_count="single",
file_types=CV_EXT,
type="filepath",
)
cv_text = gr.TextArea(
label="Or enter text",
placeholder="If attempting to both upload a file and enter text, only this text will be used.",
)
with gr.Column(scale=2):
gr.Markdown("## Result")
with gr.Accordion("Reformatting", open=True) as reformat_zone:
with gr.Row():
min_jd = gr.TextArea(label="Reformatted Job Description")
min_cv = gr.TextArea(label="Reformatted CV / Résumé")
with gr.Accordion("Expert Zone", open=False) as expert_zone:
debug_CoT = gr.Textbox(label="Chain of Thoughts")
debug_jobapp = gr.Textbox(label="Job application meta data")
cover_letter_text = gr.Textbox(label="Cover Letter")
cover_letter_pdf = gr.File(
label="Cover Letter PDF",
file_count="single",
file_types=[".pdf"],
type="filepath",
)
infer_btn = gr.Button("Go!", variant="primary")
infer_btn.click(
fn=prepare_input,
inputs=[jd_info, cv_file, cv_text],
outputs=[jd_info, cv_text]
).then(
fn=run_refine,
inputs=[cheap_base, cheap_key, cheap_model, jd_info, cv_text],
outputs=[min_jd, min_cv],
).then(fn=lambda:[gr.Accordion("Expert Zone", open=True),gr.Accordion("Reformatting", open=False)],inputs=None, outputs=[expert_zone, reformat_zone]
).then(fn=run_compose, inputs=[strong_base, strong_key, strong_model, min_jd, min_cv], outputs=[debug_CoT]
).then(fn=lambda:gr.Accordion("Expert Zone", open=False),inputs=None, outputs=[expert_zone]
).then(fn=finalize_letter_txt, inputs=[cheap_base, cheap_key, cheap_model, debug_CoT, jd_info, cv_text], outputs=[cover_letter_text, debug_jobapp]
)
if __name__ == "__main__":
init()
app.queue(max_size=10, default_concurrency_limit=1).launch(
show_error=True, debug=True, share=IS_SHARE
)
|