File size: 5,553 Bytes
b22f922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from config import DEMO_TITLE, IS_SHARE, CV_EXT, EXT_TXT
from config import CHEAP_API_BASE, CHEAP_API_KEY, CHEAP_MODEL
from config import STRONG_API_BASE, STRONG_API_KEY, STRONG_MODEL
from util import is_valid_url
from util import mylogger
from taskNonAI import extract_url, file_to_html
from taskAI import TaskAI
## load data
from data_test import mock_jd, mock_cv
## ui
import gradio as gr
## dependency
from pypandoc.pandoc_download import download_pandoc
## std
import os


logger = mylogger(__name__,'%(asctime)s:%(levelname)s:%(message)s')
info = logger.info

def init():
    os.system("shot-scraper install -b firefox")
    download_pandoc()


def run_refine(api_base, api_key, api_model, jd_info, cv_file: str, cv_text):
    if jd_info:
        if is_valid_url(jd_info):
            jd = extract_url(jd_info)
        else:
            jd = jd_info
    else:
        jd = mock_jd

    if cv_text:
        cv = cv_text
    elif cv_file:
        if any([cv_file.endswith(ext) for ext in EXT_TXT]):
            with open(cv_file, "r", encoding="utf8") as f:
                cv = f.read()
        else:
            cv = file_to_html(cv_file)
    else:
        cv = mock_cv
    cheapAPI = {"base": api_base, "key": api_key, "model": api_model}
    taskAI = TaskAI(cheapAPI, temperature=0.2, max_tokens=2048)  # max_tokens=2048
    info("API initialized")
    gen = (
        taskAI.jd_preprocess(topic="job description", input=jd),
        taskAI.cv_preprocess(input=cv),
    )
    info("tasks initialized")
    result = [""] * 2
    while 1:
        stop: bool = True
        for i in range(len(gen)):
            try:
                result[i] += next(gen[i]).delta
                stop = False
            except StopIteration:
                # info(f"gen[{i}] exhausted")
                pass
        yield result
        if stop:
            info("tasks done")
            break

def run_compose(api_base, api_key, api_model, min_jd, min_cv):
    strongAPI = {"base": api_base, "key": api_key, "model": api_model}
    taskAI = TaskAI(strongAPI, temperature=0.5, max_tokens=2048)
    info("API initialized")


with gr.Blocks(
    title=DEMO_TITLE,
    theme=gr.themes.Base(primary_hue="blue", secondary_hue="sky", neutral_hue="slate"),
) as demo:
    intro = f"""# {DEMO_TITLE}
    > You provide job description and résumé. I write Cover letter for you!
    Before you use, please setup OpenAI-like API for 2 AI agents': Cheap AI and Strong AI.
    """
    gr.Markdown(intro)

    with gr.Row():
        with gr.Column(scale=1):
            with gr.Accordion("AI setup (OpenAI-like API)", open=False):
                gr.Markdown(
                    "**Cheap AI**, an honest format converter and refinery machine, extracts essential info from job description and résumé, to reduce subsequent cost on Strong AI."
                )
                with gr.Group():
                    weak_base = gr.Textbox(
                        value=CHEAP_API_BASE, label="API BASE"
                    )
                    weak_key = gr.Textbox(value=CHEAP_API_KEY, label="API key")
                    weak_model = gr.Textbox(value=CHEAP_MODEL, label="Model ID")
                gr.Markdown(
                    "---\n**Strong AI**, a thoughtful wordsmith, generates perfect cover letters to make both you and recruiters happy."
                )
                with gr.Group():
                    strong_base = gr.Textbox(
                        value=STRONG_API_BASE, label="API BASE"
                    )
                    strong_key = gr.Textbox(
                        value=STRONG_API_KEY, label="API key", type="password"
                    )
                    strong_model = gr.Textbox(value=STRONG_MODEL, label="Model ID")
            with gr.Group():
                gr.Markdown("## Employer - Job Description")
                jd_info = gr.Textbox(
                    label="Job Description",
                    placeholder="Paste as Full Text (recommmend) or URL (may fail)",
                    lines=5,
                )
            with gr.Group():
                gr.Markdown("## Applicant - CV / Résumé")
                with gr.Row():
                    cv_file = gr.File(
                        label="Allowed formats: " + " ".join(CV_EXT),
                        file_count="single",
                        file_types=CV_EXT,
                        type="filepath",
                    )
                    cv_text = gr.TextArea(
                        label="Or enter text",
                        placeholder="If attempting to both upload a file and enter text, only this text will be used.",
                    )
        with gr.Column(scale=2):
            gr.Markdown("## Result")
            with gr.Row():
                min_jd = gr.TextArea(label="Minimized Job Description")
                min_cv = gr.TextArea(label="Minimized CV / Résumé")
            cover_letter_text = gr.TextArea(label="Cover Letter")
            cover_letter_pdf = gr.File(
                label="Cover Letter PDF",
                file_count="single",
                file_types=[".pdf"],
                type="filepath",
            )
            infer_btn = gr.Button("Go!", variant="primary")
    infer_btn.click(
        fn=run_refine,
        inputs=[weak_base, weak_key, weak_model, jd_info, cv_file, cv_text],
        outputs=[min_jd, min_cv],
        concurrency_limit=5,
    )


if __name__ == "__main__":
    init()
    demo.queue(max_size=10).launch(
        show_error=True, debug=True, share=IS_SHARE
    )