File size: 8,841 Bytes
c10c2de
b22f922
 
 
 
02fdb50
74164b2
b22f922
 
dee4e98
b22f922
 
 
 
 
 
74164b2
b22f922
 
 
 
 
 
 
 
c10c2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02fdb50
b22f922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02fdb50
 
 
 
b22f922
 
 
32e427d
02fdb50
b22f922
 
32e427d
b22f922
 
 
 
02fdb50
 
 
 
 
 
b22f922
32e427d
02fdb50
 
 
32e427d
 
 
02fdb50
b22f922
32e427d
 
 
 
74164b2
 
dee4e98
74164b2
b22f922
 
c10c2de
02fdb50
b22f922
32e427d
02fdb50
b22f922
 
 
 
 
c10c2de
 
 
b22f922
02fdb50
b22f922
 
02fdb50
c10c2de
b22f922
32e427d
02fdb50
b22f922
 
 
c10c2de
b22f922
 
c10c2de
b22f922
 
 
 
 
 
 
 
 
02fdb50
b22f922
02fdb50
b22f922
 
 
32e427d
 
 
 
 
 
 
 
 
 
 
b22f922
 
02fdb50
 
 
 
 
 
 
 
 
b22f922
 
 
 
 
 
 
02fdb50
c10c2de
 
 
02fdb50
b22f922
02fdb50
 
 
 
b22f922
02fdb50
b22f922
02fdb50
 
 
32e427d
 
b22f922
 
 
 
74164b2
b22f922
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from config import DEMO_TITLE, IS_SHARE, IS_DEBUG, CV_EXT, EXT_TXT
from config import CHEAP_API_BASE, CHEAP_API_KEY, CHEAP_MODEL
from config import STRONG_API_BASE, STRONG_API_KEY, STRONG_MODEL
from util import is_valid_url
from util import mylogger
from util import stream_together
from taskNonAI import extract_url, file_to_html, compile_pdf
from taskAI import TaskAI
## load data
from _data_test import mock_jd, mock_cv
## ui
import gradio as gr
## dependency
from pypandoc.pandoc_download import download_pandoc
## std
import os
import json

logger = mylogger(__name__,'%(asctime)s:%(levelname)s:%(message)s')
info = logger.info

def init():
    os.system("shot-scraper install -b firefox")
    download_pandoc()


## Config Functions

def set_same_cheap_strong(set_same:bool, cheap_base, cheap_key, cheap_model):
    setup_zone = gr.Accordion("AI setup (OpenAI-compatible LLM API)", open=True)
    if set_same:
        return (gr.Textbox(value=cheap_base, label="API Base", interactive=False),
                gr.Textbox(value=cheap_key, label="API key", type="password", interactive=False),
                gr.Textbox(value=cheap_model, label="Model ID", interactive=False),
                setup_zone,
                )
    else:
        return (gr.Textbox(value=cheap_base, label="API Base", interactive=True),
                gr.Textbox(value=cheap_key, label="API key", type="password", interactive=True),
                gr.Textbox(value=cheap_model, label="Model ID", interactive=True),
                setup_zone,
                )
    

## Main Functions

def prepare_input(jd_info, cv_file: str, cv_text):
    if jd_info:
        if is_valid_url(jd_info):
            jd = extract_url(jd_info)
        else:
            jd = jd_info
    else:
        jd = mock_jd

    if cv_text:
        cv = cv_text
    elif cv_file:
        if any([cv_file.endswith(ext) for ext in EXT_TXT]):
            with open(cv_file, "r", encoding="utf8") as f:
                cv = f.read()
        else:
            cv = file_to_html(cv_file)
    else:
        cv = mock_cv
    return jd, cv

def run_refine(api_base, api_key, api_model, jd_info, cv_text):
    jd,cv=jd_info,cv_text
    cheapAPI = {"base": api_base, "key": api_key, "model": api_model}
    taskAI = TaskAI(cheapAPI, temperature=0.2, max_tokens=2048)  # max_tokens=2048
    info("API initialized")
    gen = stream_together(
        taskAI.jd_preprocess(input=jd),
        taskAI.cv_preprocess(input=cv),
    )
    for result in gen:
        yield result

def run_compose(api_base, api_key, api_model, min_jd, min_cv):
    strongAPI = {"base": api_base, "key": api_key, "model": api_model}
    taskAI = TaskAI(strongAPI, temperature=0.6, max_tokens=4000)
    info("Composing letter with CoT ...")
    result = ""
    for response in taskAI.compose_letter_CoT(jd=min_jd, resume=min_cv):
        result += response.delta
        yield result

def finalize_letter_txt(api_base, api_key, api_model, debug_CoT):
    cheapAPI = {"base": api_base, "key": api_key, "model": api_model}
    taskAI = TaskAI(cheapAPI, temperature=0.2, max_tokens=2048)
    info("Finalizing letter ...")
    result=""
    for response in taskAI.purify_letter(full_text=debug_CoT):
        result += response.delta
        yield result

def finalize_letter_pdf(api_base, api_key, api_model, jd, cv, cover_letter_text):
    cheapAPI = {"base": api_base, "key": api_key, "model": api_model}
    taskAI = TaskAI(cheapAPI, temperature=0.1, max_tokens=100)
    meta_data = next(taskAI.get_jobapp_meta(JD=jd, CV=cv))
    pdf_context = json.loads(meta_data)
    pdf_context["letter_body"] = cover_letter_text
    return meta_data, compile_pdf(pdf_context,tmpl_path="typst/template_letter.tmpl",output_path=f"/tmp/cover_letter_by_{pdf_context['applicantFullName']}_to_{pdf_context['companyFullName']}.pdf")

with gr.Blocks(
    title=DEMO_TITLE,
    theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky", neutral_hue="slate"),
) as app:
    intro = f"""# {DEMO_TITLE}
    > You provide job description and résumé. I write Cover letter for you!  
    Before you use, please fisrt setup API for 2 AI agents': Cheap AI and Strong AI.
    """
    gr.Markdown(intro)

    with gr.Row():
        with gr.Column(scale=1):
            with gr.Accordion("AI setup (OpenAI-compatible LLM API)", open=False) as setup_zone:
                is_debug = gr.Checkbox( label="Debug Mode", value=IS_DEBUG)
                
                gr.Markdown(
                    "**Cheap AI**, an honest format converter and refiner, extracts essential info from job description and résumé, to reduce subsequent cost on Strong AI."
                )
                with gr.Group():
                    cheap_base = gr.Textbox(
                        value=CHEAP_API_BASE, label="API Base"
                    )
                    cheap_key = gr.Textbox(value=CHEAP_API_KEY, label="API key", type="password")
                    cheap_model = gr.Textbox(value=CHEAP_MODEL, label="Model ID")
                gr.Markdown(
                    "---\n**Strong AI**, a thoughtful wordsmith, generates perfect cover letters to make both you and recruiters happy."
                )
                is_same_cheap_strong = gr.Checkbox(label="the same as Cheap AI", value=False, container=False)
                with gr.Group():
                    strong_base = gr.Textbox(
                        value=STRONG_API_BASE, label="API Base"
                    )
                    strong_key = gr.Textbox(
                        value=STRONG_API_KEY, label="API key", type="password"
                    )
                    strong_model = gr.Textbox(value=STRONG_MODEL, label="Model ID")
            with gr.Group():
                gr.Markdown("## Employer - Job Description")
                jd_info = gr.Textbox(
                    label="Job Description",
                    placeholder="Paste as Full Text (recommmend) or URL",
                    lines=5,
                    max_lines=10,
                )
            with gr.Group():
                gr.Markdown("## Applicant - CV / Résumé")
            # with gr.Row():
                cv_file = gr.File(
                    label="Allowed formats: " + " ".join(CV_EXT),
                    file_count="single",
                    file_types=CV_EXT,
                    type="filepath",
                )
                cv_text = gr.TextArea(
                    label="Or enter text",
                    placeholder="If attempting to both upload a file and enter text, only this text will be used.",
                )
        with gr.Column(scale=2):
            gr.Markdown("## Result")
            with gr.Accordion("Reformatting", open=True) as reformat_zone:
                with gr.Row():
                    min_jd = gr.TextArea(label="Reformatted Job Description")
                    min_cv = gr.TextArea(label="Reformatted CV / Résumé")
            with gr.Accordion("Expert Zone", open=False) as expert_zone:
                
                debug_CoT = gr.Textbox(label="Chain of Thoughts")
                debug_jobapp = gr.Textbox(label="Job application meta data")
            cover_letter_text = gr.Textbox(label="Cover Letter")
            cover_letter_pdf = gr.File(
                label="Cover Letter PDF",
                file_count="single",
                file_types=[".pdf"],
                type="filepath",
            )
            infer_btn = gr.Button("Go!", variant="primary")
            
    is_same_cheap_strong.change(fn= set_same_cheap_strong, 
                                    inputs=[is_same_cheap_strong, cheap_base, cheap_key, cheap_model],
                                    outputs=[strong_base, strong_key, strong_model, setup_zone])

    infer_btn.click(
        fn=prepare_input,
        inputs=[jd_info, cv_file, cv_text],
        outputs=[jd_info, cv_text]
    ).then(
        fn=run_refine,
        inputs=[cheap_base, cheap_key, cheap_model, jd_info, cv_text],
        outputs=[min_jd, min_cv],
    ).then(fn=lambda:[gr.Accordion("Expert Zone", open=True),gr.Accordion("Reformatting", open=False)],inputs=None, outputs=[expert_zone, reformat_zone]
    ).then(fn=run_compose, inputs=[strong_base, strong_key, strong_model, min_jd, min_cv], outputs=[debug_CoT]                      
    ).then(fn=lambda:gr.Accordion("Expert Zone", open=False),inputs=None, outputs=[expert_zone]
    ).then(fn=finalize_letter_txt, inputs=[cheap_base, cheap_key, cheap_model, debug_CoT], outputs=[cover_letter_text]
    ).then(fn=finalize_letter_pdf, inputs=[cheap_base, cheap_key, cheap_model, jd_info, cv_text, cover_letter_text], outputs=[debug_jobapp, cover_letter_pdf])


if __name__ == "__main__":
    init()
    app.queue(max_size=1, default_concurrency_limit=1).launch(
        show_error=True, debug=True, share=IS_SHARE
    )