Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
path_to_model = "./model_2.h5" | |
model = tf.keras.models.load_model(path_to_model) | |
labels = ['Acne and Rosacea Photos', | |
'Actinic Keratosis Basal Cell Carcinoma and other Malignant Lesions', | |
'Atopic Dermatitis Photos', 'Bullous Disease Photos', | |
'Cellulitis Impetigo and other Bacterial Infections', | |
'Eczema Photos', 'Exanthems and Drug Eruptions', 'Hair Loss Photos Alopecia and other Hair Diseases', | |
'Herpes HPV and other STDs Photos', 'Light Diseases and Disorders of Pigmentation', | |
'Lupus and other Connective Tissue diseases', | |
'Melanoma Skin Cancer Nevi and Moles', 'Nail Fungus and other Nail Disease', | |
'Poison Ivy Photos and other Contact Dermatitis', | |
'Psoriasis pictures Lichen Planus and related diseases', 'Scabies Lyme Disease and other Infestations and Bites', | |
'Seborrheic Keratoses and other Benign Tumors', 'Systemic Disease', | |
'Tinea Ringworm Candidiasis and other Fungal Infections', | |
'Urticaria Hives', 'Vascular Tumors', 'Vasculitis Photos', 'Warts Molluscum and other Viral Infections'] | |
def classify_image(inp): | |
inp = inp.reshape((-1, 256, 256, 3)) | |
prediction = model.predict(inp).flatten() | |
confidences = {labels[i]: float(prediction[i]) for i in range(23)} | |
return confidences | |
title="SKIN DISEASE PREDICTION" | |
description = "An automated system is proposed for the diagnosis of #23 common skin diseases by using data from clinical images and patient information using deep learning pre-trained ResNet50 model." | |
examples = [ | |
['./123.jpg'], | |
['./acne-closed-comedo-2.jpg'], | |
['./distal-subungual-onychomycosis-86.jpg'], | |
['./cherry-angioma-16.jpg'], | |
['./malignant-melanoma-16.jpg'], | |
['./tinea-primary-lesion-15.jpg'] | |
] | |
gr.Interface(fn=classify_image, | |
title = title, | |
description = description, | |
inputs=gr.inputs.Image(shape=(256, 256)), | |
outputs=gr.outputs.Label(num_top_classes=4), | |
examples=examples).launch() | |