Spaces:
Runtime error
Runtime error
cybernatedArt
commited on
Commit
·
d32e7b3
1
Parent(s):
d1371b6
Update app.py
Browse files
app.py
CHANGED
@@ -1,87 +1,31 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
|
4 |
-
import tensorflow as tf
|
5 |
-
from tensorflow import keras
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import tensorflow_hub as hub
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
footer {visibility: hidden;}
|
13 |
-
</style>
|
14 |
-
"""
|
15 |
-
|
16 |
-
st.markdown(hide_streamlit_style, unsafe_allow_html = True)
|
17 |
|
18 |
-
|
19 |
-
st.write("An automated system is proposed for the diagnosis of #23 common skin diseases by using data from clinical images and patient information.")
|
20 |
|
21 |
-
|
22 |
-
file_uploaded = st.file_uploader('Choose an image...', type = 'jpg')
|
23 |
-
if file_uploaded is not None :
|
24 |
-
image = Image.open(file_uploaded)
|
25 |
-
st.write("Uploaded Image.")
|
26 |
-
figure = plt.figure()
|
27 |
-
plt.imshow(image)
|
28 |
-
plt.axis('off')
|
29 |
-
st.pyplot(figure)
|
30 |
-
result, confidence = predict_class(image)
|
31 |
-
st.write('Prediction : {}'.format(result))
|
32 |
-
st.write('Confidence : {}%'.format(confidence))
|
33 |
|
34 |
-
|
35 |
-
with st.spinner('Loading Model...'):
|
36 |
-
classifier_model = keras.models.load_model(r'model_2.h5', compile = False)
|
37 |
|
38 |
-
|
39 |
-
model = keras.Sequential([hub.KerasLayer(classifier_model, input_shape = shape)]) # ye bhi kaam kar raha he
|
40 |
-
test_image = image.resize((256, 256))
|
41 |
-
test_image = keras.preprocessing.image.img_to_array(test_image)
|
42 |
-
test_image /= 256.0
|
43 |
-
test_image = np.expand_dims(test_image, axis = 0)
|
44 |
-
class_name = ['Acne and Rosacea Photos',
|
45 |
-
'Actinic Keratosis Basal Cell Carcinoma and other Malignant Lesions',
|
46 |
-
'Atopic Dermatitis Photos', 'Bullous Disease Photos', 'Cellulitis Impetigo and other Bacterial Infections',
|
47 |
-
'Eczema Photos', 'Exanthems and Drug Eruptions', 'Hair Loss Photos Alopecia and other Hair Diseases',
|
48 |
-
'Herpes HPV and other STDs Photos', 'Light Diseases and Disorders of Pigmentation', 'Lupus and other Connective Tissue diseases',
|
49 |
-
'Melanoma Skin Cancer Nevi and Moles', 'Nail Fungus and other Nail Disease', 'Poison Ivy Photos and other Contact Dermatitis',
|
50 |
-
'Psoriasis pictures Lichen Planus and related diseases', 'Scabies Lyme Disease and other Infestations and Bites',
|
51 |
-
'Seborrheic Keratoses and other Benign Tumors', 'Systemic Disease', 'Tinea Ringworm Candidiasis and other Fungal Infections',
|
52 |
-
'Urticaria Hives', 'Vascular Tumors', 'Vasculitis Photos', 'Warts Molluscum and other Viral Infections']
|
53 |
-
prediction = model.predict_generator(test_image)
|
54 |
-
confidence = round(100 * (np.max(prediction[0])), 2)
|
55 |
-
final_pred = class_name[np.argmax(prediction)]
|
56 |
-
return final_pred, confidence
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
.
|
71 |
-
|
72 |
-
|
73 |
-
bottom: 0;
|
74 |
-
width: 100%;
|
75 |
-
background-color: transparent;
|
76 |
-
color: black;
|
77 |
-
text-align: center;
|
78 |
-
}
|
79 |
-
<div class="footer">
|
80 |
-
<p align="center"> Developed with ❤ by Mato</p>
|
81 |
-
</div>
|
82 |
-
</style>
|
83 |
-
"""
|
84 |
-
st.markdown(footer, unsafe_allow_html = True)
|
85 |
-
if __name__ == "__main__":
|
86 |
-
main()
|
87 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from fastai import *
|
3 |
+
from fastai.vision.all import *
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
import pathlib
|
6 |
+
plt = platform.system()
|
7 |
+
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
learn = load_learner('Pickle_SD_Model.pkl')
|
|
|
10 |
|
11 |
+
labels = learn.dls.vocab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
set_label = gr.outputs.Textbox(label="Predicted Class")
|
|
|
|
|
14 |
|
15 |
+
set_prob = gr.outputs.Label(num_top_classes=4, label="Predicted Probability Per Class")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
|
18 |
+
def predict(img):
|
19 |
+
img = PILImage.create(img)
|
20 |
+
pred,pred_idx,probs = learn.predict(img)
|
21 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
22 |
+
|
23 |
+
title = "Tomato Disease Classifier"
|
24 |
+
description = "Classify Tomato Disease from leaf"
|
25 |
+
interpretation='default'
|
26 |
+
|
27 |
+
enable_queue=True
|
28 |
+
|
29 |
+
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3),
|
30 |
+
examples_per_page = 2
|
31 |
+
).launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|