File size: 2,341 Bytes
95d010b
9b5b26a
 
 
c19d193
6aae614
6155246
8fe992b
9b5b26a
 
6155246
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
6155246
ae7a494
 
6155246
ae7a494
95d010b
 
6155246
 
 
7e19ad6
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
6155246
861422e
6155246
7e19ad6
 
 
 
 
eb433bb
7e19ad6
 
8c01ffb
8fe992b
6155246
 
 
 
8c01ffb
 
 
 
 
 
6155246
8fe992b
 
6155246
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from smolagents import CodeAgent, load_tool, tool, InferenceClientModel
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from tools.calories_checker import CaloriesCheckerTool

from Gradio_UI import GradioUI


@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()
calories_checker = CaloriesCheckerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'

model = InferenceClientModel(
    max_tokens=2048,
    temperature=0.5,
    model_id="Qwen/Qwen2.5-Coder-32B-Instruct",  # it is possible that this model may be overloaded
    custom_role_conversions=None,
    # inference_client_url="https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud",
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", "r") as stream:
    prompt_templates = yaml.safe_load(stream)

prompt_templates["final_answer"] = {
    "pre_messages": "",
    "final_answer": "Here is the final answer from your managed agent '{{name}}':\n{{final_answer}}",
    "post_messages": "",
}

# print("Loaded prompt templates:", prompt_templates)
# Initialize the CodeAgent with the model and tools
agent = CodeAgent(
    model=model,
    tools=[
        final_answer,
        calories_checker,
    ],  ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates,
)

GradioUI(agent).launch()