File size: 8,570 Bytes
97dcf92
 
 
 
 
73666ad
97dcf92
 
 
73666ad
97dcf92
73666ad
97dcf92
 
73666ad
 
 
 
 
 
 
 
97dcf92
73666ad
 
 
 
 
97dcf92
73666ad
 
 
97dcf92
 
 
 
 
 
 
 
 
 
 
 
73666ad
 
 
 
97dcf92
73666ad
 
 
 
 
97dcf92
 
73666ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97dcf92
73666ad
 
 
97dcf92
73666ad
 
97dcf92
73666ad
 
 
97dcf92
73666ad
97dcf92
73666ad
 
97dcf92
73666ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97dcf92
 
 
 
 
73666ad
 
 
 
 
 
 
97dcf92
 
 
73666ad
97dcf92
 
 
 
 
73666ad
97dcf92
 
 
 
 
 
73666ad
 
 
 
97dcf92
73666ad
 
97dcf92
 
 
73666ad
 
97dcf92
 
 
73666ad
 
97dcf92
 
73666ad
97dcf92
73666ad
97dcf92
73666ad
97dcf92
73666ad
 
 
 
 
 
 
97dcf92
73666ad
97dcf92
73666ad
 
 
 
97dcf92
73666ad
97dcf92
73666ad
 
97dcf92
73666ad
97dcf92
73666ad
 
 
 
97dcf92
73666ad
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import optuna
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
from configs import *
import data_loader
from torch.utils.tensorboard import SummaryWriter
import time
import numpy as np
import random

torch.cuda.empty_cache()
RANDOM_SEED1=42
random.seed(RANDOM_SEED1)
torch.cuda.manual_seed(RANDOM_SEED1)
torch.manual_seed(RANDOM_SEED1)
print("PyTorch Seed:", torch.initial_seed())
print("Random Seed:", random.getstate()[1][0])
print("PyTorch CUDA Seed:", torch.cuda.initial_seed())


# Define the constants for genetic algorithm
POPULATION_SIZE = 5
MUTATION_RATE = 0.05
CROSSOVER_RATE = 0.7
NUM_GENERATIONS = 5

EPOCHS = 5

EARLY_STOPPING_PATIENCE = 4
# Create a TensorBoard writer
writer = SummaryWriter(log_dir="output/tensorboard/tuning")

# Function to create or modify data loaders with the specified batch size
def create_data_loaders(batch_size):
    train_loader, valid_loader = data_loader.load_data(
        COMBINED_DATA_DIR + "1",
        preprocess,
        batch_size=batch_size,
    )
    return train_loader, valid_loader

# Create a TensorBoard writer
writer = SummaryWriter(log_dir="output/tensorboard/tuning")
model = MODEL.to(DEVICE)
# model.load_state_dict(torch.load(MODEL_SAVE_PATH, map_location=DEVICE))

def fitness_function(individual,model):
    batch_size, lr,= individual
    
    # Assuming you have a model, optimizer, and loss function defined
    model = model.to(DEVICE)
    optimizer = optim.Adam(model.parameters(), lr=lr)
    criterion = nn.CrossEntropyLoss()
    scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=NUM_EPOCHS)
    # Define your data loaders using the given batch_size
    train_loader, valid_loader = create_data_loaders(batch_size)

    # Training loop
    for epoch in range(EPOCHS):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader, 0):
            data, target = data.to(DEVICE), target.to(DEVICE)
            optimizer.zero_grad()
            if model.__class__.__name__ == "GoogLeNet":
                output = model(data).logits
            else:
                output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
        scheduler.step()
        # Validation loop
        model.eval()
        correct = 0
        with torch.no_grad():
            for batch_idx, (data, target) in enumerate(valid_loader, 0):
                data, target = data.to(DEVICE), target.to(DEVICE)
                data, targets_a, targets_b, lam = cutmix_data(data, target, alpha=1)
                output = model(data)
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()

        accuracy = correct / len(valid_loader.dataset)
        print(f"Epoch {epoch + 1}/{EPOCHS}, Accuracy: {accuracy:.4f}")
    return accuracy,

def rand_bbox(size, lam):
    W = size[2]
    H = size[3]
    cut_rat = np.sqrt(1.0 - lam)
    cut_w = np.int_(W * cut_rat)
    cut_h = np.int_(H * cut_rat)

    # uniform
    cx = np.random.randint(W)
    cy = np.random.randint(H)

    bbx1 = np.clip(cx - cut_w // 2, 0, W)
    bby1 = np.clip(cy - cut_h // 2, 0, H)
    bbx2 = np.clip(cx + cut_w // 2, 0, W)
    bby2 = np.clip(cy + cut_h // 2, 0, H)

    return bbx1, bby1, bbx2, bby2

def cutmix_data(input, target, alpha=1.0):
    if alpha > 0:
        lam = np.random.beta(alpha, alpha)
    else:
        lam = 1

    batch_size = input.size()[0]
    index = torch.randperm(batch_size)
    rand_index = torch.randperm(input.size()[0])

    bbx1, bby1, bbx2, bby2 = rand_bbox(input.size(), lam)
    input[:, :, bbx1:bbx2, bby1:bby2] = input[rand_index, :, bbx1:bbx2, bby1:bby2]

    lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (input.size()[-1] * input.size()[-2]))
    targets_a = target
    targets_b = target[rand_index]

    return input, targets_a, targets_b, lam

def cutmix_criterion(criterion, outputs, targets_a, targets_b, lam):
    return lam * criterion(outputs, targets_a) + (1 - lam) * criterion(outputs, targets_b)

# Function to create or modify data loaders with the specified batch size
def create_data_loaders(batch_size):
    print(f"Batch Size (before conversion): {batch_size}")
    batch_size = int(batch_size)  # Ensure batch_size is an integer
    print(f"Batch Size (after conversion): {batch_size}")
    train_loader, valid_loader = data_loader.load_data(
        COMBINED_DATA_DIR + "1",
        preprocess,
        batch_size=batch_size,
    )
    return train_loader, valid_loader

# Genetic algorithm initialization functions
def create_individual():
    lr = abs(np.random.uniform(0.0006, 0.0009))
    print(f"Generated lr: {lr}")
    return creator.Individual([
        int(np.random.choice([32])),  # Choose a valid batch size
        lr,  # lr in log scale between 1e-4 and 1e-2
    ])
# Genetic algorithm evaluation function
def evaluate_individual(individual, model=MODEL):
    batch_size, lr, = individual
    lr=abs(lr)
    # Assuming you have a model, optimizer, and loss function defined
    model = model.to(DEVICE)
    optimizer = optim.Adam(model.parameters(), lr=lr)
    criterion = nn.CrossEntropyLoss()

    # Define your data loaders using the given batch_size
    train_loader, valid_loader = create_data_loaders(batch_size)

    # Training loop
    for epoch in range(EPOCHS):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader, 0):
            data, target = data.to(DEVICE), target.to(DEVICE)
            optimizer.zero_grad()
            # Apply CutMix
            data, targets_a, targets_b, lam = cutmix_data(data, target, alpha=1)
            if model.__class__.__name__ == "GoogLeNet":
                output = model(data).logits
            else:
                output = model(data)
            loss = cutmix_criterion(criterion, output, targets_a, targets_b, lam)
            loss.backward()
            optimizer.step()

        # Validation loop
        model.eval()
        correct = 0
        with torch.no_grad():
            for batch_idx, (data, target) in enumerate(valid_loader, 0):
                data, target = data.to(DEVICE), target.to(DEVICE)
                data, targets_a, targets_b, lam = cutmix_data(data, target, alpha=1)
                output = model(data)
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()

        accuracy = correct / len(valid_loader.dataset)

        # Log accuracy or other metrics as needed
        writer.add_scalar("Accuracy", accuracy, epoch)

        print(f"Epoch {epoch + 1}/{EPOCHS}, Accuracy: {accuracy:.4f}")

    # Return the accuracy (or any other metric you want to optimize)
    return (accuracy,)

if __name__ == "__main__":
    pruner = optuna.pruners.HyperbandPruner()

    start_time = time.time()
    study = optuna.create_study(
        direction="maximize",
        pruner=pruner,
        study_name="hyperparameter_optimization",
        storage="sqlite:///" + MODEL.__class__.__name__ + ".sqlite3",
    )

    from deap import base, creator, tools, algorithms

    creator.create("FitnessMax", base.Fitness, weights=(1.0,))

    creator.create("Individual", list, fitness=creator.FitnessMax)

    toolbox = base.Toolbox()
    toolbox.register("individual", create_individual)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    toolbox.register("evaluate", fitness_function, model=model)
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=0.1, indpb=MUTATION_RATE)
    toolbox.register("select", tools.selTournament, tournsize=3)

    population = toolbox.population(n=POPULATION_SIZE)

    for ind in population:
        print(type(ind))
        fitness_value = evaluate_individual(ind, model)
        ind.fitness.values = (fitness_value[0],)

    algorithms.eaSimple(population, toolbox, cxpb=CROSSOVER_RATE, mutpb=MUTATION_RATE, ngen=NUM_GENERATIONS, stats=None, halloffame=None, verbose=True)

    best_individual = tools.selBest(population, 1)[0]
    best_batch_size, best_lr = best_individual

    best_accuracy = evaluate_individual(best_individual, model)

    print("Best Hyperparameters:")
    print(f"Batch Size: {best_batch_size}")
    print(f"Learning Rate: {best_lr}")
    print(f"Best Accuracy: {best_accuracy[0]}")

    end_time = time.time()
    tuning_duration = end_time - start_time
    print(f"Hyperparameter optimization took {tuning_duration:.2f} seconds.")