File size: 3,088 Bytes
73666ad
c45c4e1
 
 
 
 
 
 
 
73666ad
c45c4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73666ad
 
 
 
c45c4e1
 
 
 
 
 
73666ad
c45c4e1
 
 
 
 
73666ad
 
c45c4e1
 
 
73666ad
c45c4e1
 
 
 
 
73666ad
 
c45c4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73666ad
c45c4e1
 
 
 
 
 
73666ad
c45c4e1
 
 
73666ad
c45c4e1
 
 
73666ad
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
from gradio_client import Client
import time
import csv
import matplotlib.pyplot as plt
from matplotlib import rcParams
from configs import *
from PIL import Image

client = Client("https://cycool29-spiralsense.hf.space/")

list_of_times = []


rcParams["font.family"] = "Times New Roman"

# Load the model
model = MODEL.to(DEVICE)
model.load_state_dict(torch.load(MODEL_SAVE_PATH, map_location=DEVICE))
model.eval()

for disease in CLASSES:
    print("Processing", disease)
    for image_path in os.listdir(r"data\test\Task 1\{}".format(disease)):
        # print("Processing", image_path)
        image_path = r"data\test\Task 1\{}\{}".format(disease, image_path)
        start_time = time.time()
        result = client.predict(
            image_path,
            False,  
            False,  
            fn_index=0,
        )
        time_taken = time.time() - start_time
        list_of_times.append(time_taken)
        print("Time taken:", time_taken)

        # Log to csv
        with open("log.csv", "a", newline="") as file:
            writer = csv.writer(file)
            writer.writerow([disease])
            writer.writerow([image_path])
            writer.writerow([time_taken])


print("Average time taken:", sum(list_of_times) / len(list_of_times))
print("Max time taken:", max(list_of_times))
print("Min time taken:", min(list_of_times))
print("Total time taken:", sum(list_of_times))
print("Median time taken:", sorted(list_of_times)[len(list_of_times) // 2])

# Plot the histogram
plt.hist(list_of_times, bins=10)
plt.xlabel("Time taken (s)")
plt.ylabel("Frequency")
plt.title("Time Taken to Process Each Image (Web)")
plt.savefig("docs/evaluation/time_taken_for_web.png")


# Now is local
list_of_times = []

for disease in CLASSES:
    print("Processing", disease)
    for image_path in os.listdir(r"data\test\Task 1\{}".format(disease)):
        # print("Processing", image_path)
        image_path = r"data\test\Task 1\{}\{}".format(disease, image_path)
        start_time = time.time()
        image = Image.open(image_path).convert("RGB")
        image = preprocess(image).unsqueeze(0)
        image = image.to(DEVICE)
        output = model(image)
        time_taken = time.time() - start_time
        list_of_times.append(time_taken)
        print("Time taken:", time_taken)

        # Log to csv
        with open("log.csv", "a", newline="") as file:
            writer = csv.writer(file)
            writer.writerow([disease])
            writer.writerow([image_path])
            writer.writerow([time_taken])


print("Average time taken local:", sum(list_of_times) / len(list_of_times))
print("Max time taken local:", max(list_of_times))
print("Min time taken local:", min(list_of_times))
print("Total time taken local:", sum(list_of_times))
print("Median time taken local:", sorted(list_of_times)[len(list_of_times) // 2])

# Plot the histogram
plt.hist(list_of_times, bins=10)
plt.xlabel("Time taken (s)")
plt.ylabel("Frequency")
plt.title("Time taken to Process Each Image (Local)")
plt.savefig("docs/evaluation/time_taken_for_local.png")