Update
Browse files- augment.py +28 -25
- configs.py +10 -10
- eval.py +6 -6
- models.py +6 -0
- train.py +141 -119
- tuning.py +44 -37
augment.py
CHANGED
@@ -2,30 +2,33 @@ import os
|
|
2 |
import Augmentor
|
3 |
import shutil
|
4 |
from configs import *
|
|
|
5 |
|
6 |
tasks = ["1", "2", "3", "4", "5", "6"]
|
7 |
|
8 |
-
for task in
|
9 |
# Loop through all folders in Task 1 and generate augmented images for each class
|
10 |
-
for
|
11 |
-
if
|
12 |
-
print("Augmenting images in class: ",
|
13 |
# Create a temp folder to combine the raw data and the external data
|
14 |
-
if not os.path.exists(f"
|
15 |
-
os.makedirs(f"
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
26 |
p = Augmentor.Pipeline(
|
27 |
-
f"
|
28 |
-
output_directory=f"{
|
29 |
save_format="png",
|
30 |
)
|
31 |
p.rotate(probability=0.8, max_left_rotation=5, max_right_rotation=5)
|
@@ -39,20 +42,20 @@ for task in tasks:
|
|
39 |
p.sample(100 - len(p.augmentor_images))
|
40 |
# Move the folder to data/train/Task 1/augmented
|
41 |
# Create the folder if it does not exist
|
42 |
-
if not os.path.exists(f"
|
43 |
-
os.makedirs(f"
|
44 |
# Move all images in the data/train/Task 1/i folder to data/train/Task 1/augmented/i
|
45 |
os.rename(
|
46 |
-
f"
|
47 |
-
f"
|
48 |
)
|
49 |
# Rename all the augmented images to [01, 02, 03]
|
50 |
number = 0
|
51 |
-
for file in os.listdir(f"
|
52 |
number = int(number) + 1
|
53 |
if len(str(number)) == 1:
|
54 |
number = "0" + str(number)
|
55 |
os.rename(
|
56 |
-
f"
|
57 |
-
f"
|
58 |
)
|
|
|
2 |
import Augmentor
|
3 |
import shutil
|
4 |
from configs import *
|
5 |
+
import uuid
|
6 |
|
7 |
tasks = ["1", "2", "3", "4", "5", "6"]
|
8 |
|
9 |
+
for task in ["1"]:
|
10 |
# Loop through all folders in Task 1 and generate augmented images for each class
|
11 |
+
for class_label in ['Alzheimer Disease', 'Cerebral Palsy', 'Dystonia', 'Essential Tremor', 'Healthy', 'Huntington Disease', 'Parkinson Disease']:
|
12 |
+
if class_label != ".DS_Store":
|
13 |
+
print("Augmenting images in class: ", class_label, " in Task ", task)
|
14 |
# Create a temp folder to combine the raw data and the external data
|
15 |
+
if not os.path.exists(f"{TEMP_DATA_DIR}Task {task}/{class_label}/"):
|
16 |
+
os.makedirs(f"{TEMP_DATA_DIR}Task {task}/{class_label}/")
|
17 |
+
if os.path.exists(f"{RAW_DATA_DIR}Task {task}/{class_label}"):
|
18 |
+
for file in os.listdir(f"{RAW_DATA_DIR}Task {task}/{class_label}"):
|
19 |
+
shutil.copy(
|
20 |
+
f"{RAW_DATA_DIR}Task {task}/{class_label}/{file}",
|
21 |
+
f"{TEMP_DATA_DIR}Task {task}/{class_label}/{str(uuid.uuid4())}.png",
|
22 |
+
)
|
23 |
+
if os.path.exists(f"{EXTERNAL_DATA_DIR}Task {task}/{class_label}"):
|
24 |
+
for file in os.listdir(f"{EXTERNAL_DATA_DIR}Task {task}/{class_label}"):
|
25 |
+
shutil.copy(
|
26 |
+
f"{EXTERNAL_DATA_DIR}Task {task}/{class_label}/{file}",
|
27 |
+
f"{TEMP_DATA_DIR}Task {task}/{class_label}/{str(uuid.uuid4())}.png",
|
28 |
+
)
|
29 |
p = Augmentor.Pipeline(
|
30 |
+
f"{TEMP_DATA_DIR}Task {task}/{class_label}",
|
31 |
+
output_directory=f"{class_label}/",
|
32 |
save_format="png",
|
33 |
)
|
34 |
p.rotate(probability=0.8, max_left_rotation=5, max_right_rotation=5)
|
|
|
42 |
p.sample(100 - len(p.augmentor_images))
|
43 |
# Move the folder to data/train/Task 1/augmented
|
44 |
# Create the folder if it does not exist
|
45 |
+
if not os.path.exists(f"{AUG_DATA_DIR}Task {task}/"):
|
46 |
+
os.makedirs(f"{AUG_DATA_DIR}Task {task}/")
|
47 |
# Move all images in the data/train/Task 1/i folder to data/train/Task 1/augmented/i
|
48 |
os.rename(
|
49 |
+
f"{TEMP_DATA_DIR}Task {task}/{class_label}/{class_label}",
|
50 |
+
f"{AUG_DATA_DIR}Task {task}/{class_label}",
|
51 |
)
|
52 |
# Rename all the augmented images to [01, 02, 03]
|
53 |
number = 0
|
54 |
+
for file in os.listdir(f"{AUG_DATA_DIR}Task {task}/{class_label}"):
|
55 |
number = int(number) + 1
|
56 |
if len(str(number)) == 1:
|
57 |
number = "0" + str(number)
|
58 |
os.rename(
|
59 |
+
f"{AUG_DATA_DIR}Task {task}/{class_label}/{file}",
|
60 |
+
f"{AUG_DATA_DIR}Task {task}/{class_label}/{number}.png",
|
61 |
)
|
configs.py
CHANGED
@@ -6,23 +6,23 @@ from models import *
|
|
6 |
|
7 |
# Constants
|
8 |
RANDOM_SEED = 123
|
9 |
-
BATCH_SIZE =
|
10 |
NUM_EPOCHS = 100
|
11 |
-
LEARNING_RATE =
|
12 |
-
OPTIMIZER_NAME = "Adam"
|
13 |
STEP_SIZE = 10
|
14 |
-
GAMMA = 0
|
15 |
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
16 |
NUM_PRINT = 100
|
17 |
TASK = 1
|
18 |
-
RAW_DATA_DIR = r"data/train/raw/Task "
|
19 |
-
AUG_DATA_DIR = r"data/train/augmented/Task "
|
20 |
-
EXTERNAL_DATA_DIR = r"data/train/external/Task "
|
|
|
21 |
NUM_CLASSES = 7
|
22 |
-
|
23 |
-
CLASSES =
|
24 |
MODEL_SAVE_PATH = "output/checkpoints/model.pth"
|
25 |
-
MODEL =
|
26 |
|
27 |
print(CLASSES)
|
28 |
|
|
|
6 |
|
7 |
# Constants
|
8 |
RANDOM_SEED = 123
|
9 |
+
BATCH_SIZE = 16
|
10 |
NUM_EPOCHS = 100
|
11 |
+
LEARNING_RATE = 5.847227637580824e-05
|
|
|
12 |
STEP_SIZE = 10
|
13 |
+
GAMMA = 1.0
|
14 |
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
15 |
NUM_PRINT = 100
|
16 |
TASK = 1
|
17 |
+
RAW_DATA_DIR = r"data/train/raw/Task "
|
18 |
+
AUG_DATA_DIR = r"data/train/augmented/Task "
|
19 |
+
EXTERNAL_DATA_DIR = r"data/train/external/Task "
|
20 |
+
TEMP_DATA_DIR = "data/temp/"
|
21 |
NUM_CLASSES = 7
|
22 |
+
EARLY_STOPPING_PATIENCE = 20
|
23 |
+
CLASSES = ['Alzheimer Disease', 'Cerebral Palsy', 'Dystonia', 'Essential Tremor', 'Healthy', 'Huntington Disease', 'Parkinson Disease']
|
24 |
MODEL_SAVE_PATH = "output/checkpoints/model.pth"
|
25 |
+
MODEL = efficientnet_b1(num_classes=NUM_CLASSES)
|
26 |
|
27 |
print(CLASSES)
|
28 |
|
eval.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
from torchvision.transforms import transforms
|
4 |
-
from sklearn.metrics import f1_score
|
5 |
import pathlib
|
6 |
from PIL import Image
|
7 |
-
from torchmetrics import ConfusionMatrix
|
8 |
import matplotlib.pyplot as plt
|
9 |
from configs import *
|
10 |
from data_loader import load_data # Import the load_data function
|
@@ -19,7 +18,6 @@ MODEL = MODEL.to(DEVICE)
|
|
19 |
MODEL.load_state_dict(torch.load(MODEL_SAVE_PATH, map_location=DEVICE))
|
20 |
MODEL.eval()
|
21 |
|
22 |
-
|
23 |
def predict_image(image_path, model, transform):
|
24 |
model.eval()
|
25 |
correct_predictions = 0
|
@@ -32,6 +30,9 @@ def predict_image(image_path, model, transform):
|
|
32 |
true_classes = []
|
33 |
predicted_labels = []
|
34 |
|
|
|
|
|
|
|
35 |
with torch.no_grad():
|
36 |
for image_file in images:
|
37 |
print("---------------------------")
|
@@ -57,7 +58,7 @@ def predict_image(image_path, model, transform):
|
|
57 |
# Calculate accuracy and f1 score
|
58 |
accuracy = correct_predictions / total_predictions
|
59 |
print("Accuracy:", accuracy)
|
60 |
-
f1 =
|
61 |
print("Weighted F1 Score:", f1)
|
62 |
|
63 |
# Convert the lists to tensors
|
@@ -66,13 +67,12 @@ def predict_image(image_path, model, transform):
|
|
66 |
|
67 |
# Create a confusion matrix
|
68 |
conf_matrix = ConfusionMatrix(num_classes=NUM_CLASSES, task="multiclass")
|
69 |
-
conf_matrix
|
70 |
|
71 |
# Plot the confusion matrix
|
72 |
conf_matrix.compute()
|
73 |
conf_matrix.plot()
|
74 |
plt.show()
|
75 |
|
76 |
-
|
77 |
# Call predict_image function
|
78 |
predict_image(image_path, MODEL, preprocess)
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
from torchvision.transforms import transforms
|
|
|
4 |
import pathlib
|
5 |
from PIL import Image
|
6 |
+
from torchmetrics import ConfusionMatrix, Accuracy, F1Score
|
7 |
import matplotlib.pyplot as plt
|
8 |
from configs import *
|
9 |
from data_loader import load_data # Import the load_data function
|
|
|
18 |
MODEL.load_state_dict(torch.load(MODEL_SAVE_PATH, map_location=DEVICE))
|
19 |
MODEL.eval()
|
20 |
|
|
|
21 |
def predict_image(image_path, model, transform):
|
22 |
model.eval()
|
23 |
correct_predictions = 0
|
|
|
30 |
true_classes = []
|
31 |
predicted_labels = []
|
32 |
|
33 |
+
accuracy_metric = Accuracy(num_classes=NUM_CLASSES, task="multiclass")
|
34 |
+
f1_metric = F1Score(num_classes=NUM_CLASSES, task="multiclass")
|
35 |
+
|
36 |
with torch.no_grad():
|
37 |
for image_file in images:
|
38 |
print("---------------------------")
|
|
|
58 |
# Calculate accuracy and f1 score
|
59 |
accuracy = correct_predictions / total_predictions
|
60 |
print("Accuracy:", accuracy)
|
61 |
+
f1 = f1_metric(torch.tensor(predicted_labels), torch.tensor(true_classes)).item()
|
62 |
print("Weighted F1 Score:", f1)
|
63 |
|
64 |
# Convert the lists to tensors
|
|
|
67 |
|
68 |
# Create a confusion matrix
|
69 |
conf_matrix = ConfusionMatrix(num_classes=NUM_CLASSES, task="multiclass")
|
70 |
+
conf_matrix(predicted_labels_tensor, true_classes_tensor)
|
71 |
|
72 |
# Plot the confusion matrix
|
73 |
conf_matrix.compute()
|
74 |
conf_matrix.plot()
|
75 |
plt.show()
|
76 |
|
|
|
77 |
# Call predict_image function
|
78 |
predict_image(image_path, MODEL, preprocess)
|
models.py
CHANGED
@@ -34,3 +34,9 @@ from torchvision.models import shufflenet_v2_x1_0
|
|
34 |
from torchvision.models import shufflenet_v2_x1_5
|
35 |
from torchvision.models import shufflenet_v2_x2_0
|
36 |
from torchvision.models import squeezenet1_1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
from torchvision.models import shufflenet_v2_x1_5
|
35 |
from torchvision.models import shufflenet_v2_x2_0
|
36 |
from torchvision.models import squeezenet1_1
|
37 |
+
from torchvision.models import efficientnet_v2_s
|
38 |
+
from torchvision.models import efficientnet_v2_m
|
39 |
+
from torchvision.models import efficientnet_v2_l
|
40 |
+
from torchvision.models import efficientnet_b0
|
41 |
+
from torchvision.models import efficientnet_b1
|
42 |
+
|
train.py
CHANGED
@@ -8,50 +8,32 @@ from torch.utils.tensorboard import SummaryWriter
|
|
8 |
from configs import *
|
9 |
import data_loader
|
10 |
|
11 |
-
# Set up TensorBoard writer
|
12 |
-
writer = SummaryWriter(log_dir="output/tensorboard/training")
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
for metric_name, metric_value in metrics_dict.items():
|
17 |
writer.add_scalar(f"{prefix}/{metric_name}", metric_value, step)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
)
|
23 |
-
|
24 |
-
# Initialize model, criterion, optimizer, and scheduler
|
25 |
-
MODEL = MODEL.to(DEVICE)
|
26 |
-
criterion = nn.CrossEntropyLoss()
|
27 |
-
if OPTIMIZER_NAME == "LBFGS":
|
28 |
-
optimizer = optim.LBFGS(MODEL.parameters(), lr=LEARNING_RATE)
|
29 |
-
elif OPTIMIZER_NAME == "Adam":
|
30 |
-
optimizer = optim.Adam(MODEL.parameters(), lr=LEARNING_RATE)
|
31 |
-
elif OPTIMIZER_NAME == "SGD":
|
32 |
-
optimizer = optim.SGD(MODEL.parameters(), lr=LEARNING_RATE)
|
33 |
-
|
34 |
-
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=STEP_SIZE, gamma=GAMMA)
|
35 |
-
|
36 |
-
# Define early stopping parameters
|
37 |
-
early_stopping_patience = 20 # Number of epochs with no improvement to wait before stopping
|
38 |
-
best_val_loss = float("inf")
|
39 |
-
best_val_accuracy = 0.0
|
40 |
-
no_improvement_count = 0
|
41 |
-
|
42 |
-
# Lists to store training and validation loss history
|
43 |
-
TRAIN_LOSS_HIST = []
|
44 |
-
VAL_LOSS_HIST = []
|
45 |
-
AVG_TRAIN_LOSS_HIST = []
|
46 |
-
AVG_VAL_LOSS_HIST = []
|
47 |
-
TRAIN_ACC_HIST = []
|
48 |
-
VAL_ACC_HIST = []
|
49 |
-
|
50 |
-
# Training loop
|
51 |
-
for epoch in range(NUM_EPOCHS):
|
52 |
-
print(f"[Epoch: {epoch + 1}]")
|
53 |
-
print("Learning rate:", scheduler.get_last_lr()[0])
|
54 |
-
MODEL.train() # Set model to training mode
|
55 |
running_loss = 0.0
|
56 |
total_train = 0
|
57 |
correct_train = 0
|
@@ -59,16 +41,13 @@ for epoch in range(NUM_EPOCHS):
|
|
59 |
for i, (inputs, labels) in enumerate(train_loader, 0):
|
60 |
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
|
61 |
optimizer.zero_grad()
|
62 |
-
if
|
63 |
-
outputs =
|
64 |
else:
|
65 |
-
outputs =
|
66 |
loss = criterion(outputs, labels)
|
67 |
loss.backward()
|
68 |
-
|
69 |
-
optimizer.step(closure=lambda: loss)
|
70 |
-
else:
|
71 |
-
optimizer.step()
|
72 |
running_loss += loss.item()
|
73 |
|
74 |
if (i + 1) % NUM_PRINT == 0:
|
@@ -83,21 +62,11 @@ for epoch in range(NUM_EPOCHS):
|
|
83 |
correct_train += (predicted == labels).sum().item()
|
84 |
|
85 |
avg_train_loss = running_loss / len(train_loader)
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
"Loss": avg_train_loss,
|
92 |
-
"Accuracy": correct_train / total_train,
|
93 |
-
}
|
94 |
-
plot_and_log_metrics(train_metrics, epoch, prefix="Train")
|
95 |
-
|
96 |
-
# Learning rate scheduling
|
97 |
-
scheduler.step()
|
98 |
-
|
99 |
-
# Validation loop
|
100 |
-
MODEL.eval() # Set model to evaluation mode
|
101 |
val_loss = 0.0
|
102 |
correct_val = 0
|
103 |
total_val = 0
|
@@ -105,67 +74,120 @@ for epoch in range(NUM_EPOCHS):
|
|
105 |
with torch.no_grad():
|
106 |
for inputs, labels in valid_loader:
|
107 |
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
|
108 |
-
outputs =
|
109 |
loss = criterion(outputs, labels)
|
110 |
val_loss += loss.item()
|
111 |
-
# Calculate accuracy
|
112 |
_, predicted = torch.max(outputs, 1)
|
113 |
total_val += labels.size(0)
|
114 |
correct_val += (predicted == labels).sum().item()
|
115 |
|
116 |
avg_val_loss = val_loss / len(valid_loader)
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from configs import *
|
9 |
import data_loader
|
10 |
|
|
|
|
|
11 |
|
12 |
+
def setup_tensorboard():
|
13 |
+
return SummaryWriter(log_dir="output/tensorboard/training")
|
14 |
+
|
15 |
+
|
16 |
+
def load_and_preprocess_data():
|
17 |
+
return data_loader.load_data(
|
18 |
+
RAW_DATA_DIR + str(TASK), AUG_DATA_DIR + str(TASK), EXTERNAL_DATA_DIR + str(TASK), preprocess
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
def initialize_model_optimizer_scheduler():
|
23 |
+
model = MODEL.to(DEVICE)
|
24 |
+
criterion = nn.CrossEntropyLoss()
|
25 |
+
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
26 |
+
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=STEP_SIZE, gamma=GAMMA)
|
27 |
+
return model, criterion, optimizer, scheduler
|
28 |
+
|
29 |
+
|
30 |
+
def plot_and_log_metrics(metrics_dict, step, writer, prefix="Train"):
|
31 |
for metric_name, metric_value in metrics_dict.items():
|
32 |
writer.add_scalar(f"{prefix}/{metric_name}", metric_value, step)
|
33 |
|
34 |
+
|
35 |
+
def train_one_epoch(model, criterion, optimizer, train_loader, epoch):
|
36 |
+
model.train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
running_loss = 0.0
|
38 |
total_train = 0
|
39 |
correct_train = 0
|
|
|
41 |
for i, (inputs, labels) in enumerate(train_loader, 0):
|
42 |
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
|
43 |
optimizer.zero_grad()
|
44 |
+
if model.__class__.__name__ == "GoogLeNet":
|
45 |
+
outputs = model(inputs).logits
|
46 |
else:
|
47 |
+
outputs = model(inputs)
|
48 |
loss = criterion(outputs, labels)
|
49 |
loss.backward()
|
50 |
+
optimizer.step()
|
|
|
|
|
|
|
51 |
running_loss += loss.item()
|
52 |
|
53 |
if (i + 1) % NUM_PRINT == 0:
|
|
|
62 |
correct_train += (predicted == labels).sum().item()
|
63 |
|
64 |
avg_train_loss = running_loss / len(train_loader)
|
65 |
+
return avg_train_loss, correct_train / total_train
|
66 |
+
|
67 |
+
|
68 |
+
def validate_model(model, criterion, valid_loader):
|
69 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
val_loss = 0.0
|
71 |
correct_val = 0
|
72 |
total_val = 0
|
|
|
74 |
with torch.no_grad():
|
75 |
for inputs, labels in valid_loader:
|
76 |
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
|
77 |
+
outputs = model(inputs)
|
78 |
loss = criterion(outputs, labels)
|
79 |
val_loss += loss.item()
|
|
|
80 |
_, predicted = torch.max(outputs, 1)
|
81 |
total_val += labels.size(0)
|
82 |
correct_val += (predicted == labels).sum().item()
|
83 |
|
84 |
avg_val_loss = val_loss / len(valid_loader)
|
85 |
+
return avg_val_loss, correct_val / total_val
|
86 |
+
|
87 |
+
|
88 |
+
def main_training_loop():
|
89 |
+
writer = setup_tensorboard()
|
90 |
+
train_loader, valid_loader = load_and_preprocess_data()
|
91 |
+
model, criterion, optimizer, scheduler = initialize_model_optimizer_scheduler()
|
92 |
+
|
93 |
+
best_val_loss = float("inf")
|
94 |
+
best_val_accuracy = 0.0
|
95 |
+
no_improvement_count = 0
|
96 |
+
|
97 |
+
AVG_TRAIN_LOSS_HIST = []
|
98 |
+
AVG_VAL_LOSS_HIST = []
|
99 |
+
TRAIN_ACC_HIST = []
|
100 |
+
VAL_ACC_HIST = []
|
101 |
+
|
102 |
+
for epoch in range(NUM_EPOCHS):
|
103 |
+
print(f"[Epoch: {epoch + 1}]")
|
104 |
+
print("Learning rate:", scheduler.get_last_lr()[0])
|
105 |
+
|
106 |
+
avg_train_loss, train_accuracy = train_one_epoch(
|
107 |
+
model, criterion, optimizer, train_loader, epoch
|
108 |
+
)
|
109 |
+
AVG_TRAIN_LOSS_HIST.append(avg_train_loss)
|
110 |
+
TRAIN_ACC_HIST.append(train_accuracy)
|
111 |
+
|
112 |
+
# Log training metrics
|
113 |
+
train_metrics = {
|
114 |
+
"Loss": avg_train_loss,
|
115 |
+
"Accuracy": train_accuracy,
|
116 |
+
}
|
117 |
+
plot_and_log_metrics(train_metrics, epoch, writer=writer, prefix="Train")
|
118 |
+
|
119 |
+
# Learning rate scheduling
|
120 |
+
scheduler.step()
|
121 |
+
|
122 |
+
avg_val_loss, val_accuracy = validate_model(model, criterion, valid_loader)
|
123 |
+
AVG_VAL_LOSS_HIST.append(avg_val_loss)
|
124 |
+
VAL_ACC_HIST.append(val_accuracy)
|
125 |
+
|
126 |
+
# Log validation metrics
|
127 |
+
val_metrics = {
|
128 |
+
"Loss": avg_val_loss,
|
129 |
+
"Accuracy": val_accuracy,
|
130 |
+
}
|
131 |
+
plot_and_log_metrics(train_metrics, epoch, writer=writer, prefix="Train")
|
132 |
+
|
133 |
+
# Print average training and validation metrics
|
134 |
+
print(f"Average Training Loss: {avg_train_loss:.6f}")
|
135 |
+
print(f"Average Validation Loss: {avg_val_loss:.6f}")
|
136 |
+
print(f"Training Accuracy: {train_accuracy:.6f}")
|
137 |
+
print(f"Validation Accuracy: {val_accuracy:.6f}")
|
138 |
+
|
139 |
+
# Check for early stopping based on validation accuracy
|
140 |
+
if val_accuracy > best_val_accuracy:
|
141 |
+
best_val_accuracy = val_accuracy
|
142 |
+
no_improvement_count = 0
|
143 |
+
else:
|
144 |
+
no_improvement_count += 1
|
145 |
+
|
146 |
+
# Early stopping condition
|
147 |
+
if no_improvement_count >= EARLY_STOPPING_PATIENCE:
|
148 |
+
print(
|
149 |
+
"Early stopping: Validation accuracy did not improve for {} consecutive epochs.".format(
|
150 |
+
EARLY_STOPPING_PATIENCE
|
151 |
+
)
|
152 |
+
)
|
153 |
+
break
|
154 |
+
|
155 |
+
# Save the model
|
156 |
+
torch.save(model.state_dict(), MODEL_SAVE_PATH)
|
157 |
+
print("Model saved at", MODEL_SAVE_PATH)
|
158 |
+
|
159 |
+
# Plot loss and accuracy curves
|
160 |
+
plt.figure(figsize=(12, 4))
|
161 |
+
plt.subplot(1, 2, 1)
|
162 |
+
plt.plot(
|
163 |
+
range(1, len(AVG_TRAIN_LOSS_HIST) + 1),
|
164 |
+
AVG_TRAIN_LOSS_HIST,
|
165 |
+
label="Average Train Loss",
|
166 |
+
)
|
167 |
+
plt.plot(
|
168 |
+
range(1, len(AVG_VAL_LOSS_HIST) + 1),
|
169 |
+
AVG_VAL_LOSS_HIST,
|
170 |
+
label="Average Validation Loss",
|
171 |
+
)
|
172 |
+
plt.xlabel("Epochs")
|
173 |
+
plt.ylabel("Loss")
|
174 |
+
plt.legend()
|
175 |
+
plt.title("Loss Curves")
|
176 |
+
|
177 |
+
plt.subplot(1, 2, 2)
|
178 |
+
plt.plot(range(1, len(TRAIN_ACC_HIST) + 1), TRAIN_ACC_HIST, label="Train Accuracy")
|
179 |
+
plt.plot(range(1, len(VAL_ACC_HIST) + 1), VAL_ACC_HIST, label="Validation Accuracy")
|
180 |
+
plt.xlabel("Epochs")
|
181 |
+
plt.ylabel("Accuracy")
|
182 |
+
plt.legend()
|
183 |
+
plt.title("Accuracy Curves")
|
184 |
+
|
185 |
+
plt.tight_layout()
|
186 |
+
plt.savefig("training_curves.png")
|
187 |
+
|
188 |
+
# Close TensorBoard writer
|
189 |
+
writer.close()
|
190 |
+
|
191 |
+
|
192 |
+
if __name__ == "__main__":
|
193 |
+
main_training_loop()
|
tuning.py
CHANGED
@@ -9,21 +9,27 @@ from configs import *
|
|
9 |
import data_loader
|
10 |
from torch.utils.tensorboard import SummaryWriter
|
11 |
|
12 |
-
optuna.logging.set_verbosity(optuna.logging.DEBUG)
|
13 |
-
|
14 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
EPOCHS = 10
|
|
|
|
|
16 |
|
17 |
# Create a TensorBoard writer
|
18 |
-
writer = SummaryWriter(log_dir="output/tensorboard/tuning
|
|
|
19 |
|
20 |
def create_data_loaders(batch_size):
|
21 |
# Create or modify data loaders with the specified batch size
|
22 |
train_loader, valid_loader = data_loader.load_data(
|
23 |
-
RAW_DATA_DIR
|
|
|
|
|
|
|
|
|
24 |
)
|
25 |
return train_loader, valid_loader
|
26 |
|
|
|
27 |
def objective(trial, model=MODEL):
|
28 |
# Generate the model.
|
29 |
model = model.to(DEVICE)
|
@@ -35,11 +41,16 @@ def objective(trial, model=MODEL):
|
|
35 |
train_loader, valid_loader = create_data_loaders(batch_size)
|
36 |
|
37 |
# Generate the optimizer.
|
38 |
-
|
39 |
-
|
40 |
-
optimizer = getattr(optim, optimizer_name)(model.parameters(), lr=lr)
|
41 |
criterion = nn.CrossEntropyLoss()
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Training of the model.
|
44 |
for epoch in range(EPOCHS):
|
45 |
print(f"[Epoch: {epoch} | Trial: {trial.number}]")
|
@@ -47,16 +58,18 @@ def objective(trial, model=MODEL):
|
|
47 |
for batch_idx, (data, target) in enumerate(train_loader, 0):
|
48 |
data, target = data.to(DEVICE), target.to(DEVICE)
|
49 |
optimizer.zero_grad()
|
50 |
-
if
|
|
|
|
|
51 |
output = model(data).logits
|
52 |
else:
|
53 |
output = model(data)
|
54 |
loss = criterion(output, target)
|
55 |
loss.backward()
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
# Validation of the model.
|
62 |
model.eval()
|
@@ -74,14 +87,8 @@ def objective(trial, model=MODEL):
|
|
74 |
# Log hyperparameters and accuracy to TensorBoard
|
75 |
writer.add_scalar("Accuracy", accuracy, trial.number)
|
76 |
writer.add_hparams(
|
77 |
-
{
|
78 |
-
|
79 |
-
"optimizer": optimizer_name,
|
80 |
-
"lr": lr
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"accuracy": accuracy
|
84 |
-
}
|
85 |
)
|
86 |
|
87 |
# Print hyperparameters and accuracy
|
@@ -93,29 +100,29 @@ def objective(trial, model=MODEL):
|
|
93 |
if trial.should_prune():
|
94 |
raise optuna.exceptions.TrialPruned()
|
95 |
|
|
|
|
|
|
|
96 |
return accuracy
|
97 |
|
|
|
98 |
if __name__ == "__main__":
|
99 |
pruner = optuna.pruners.HyperbandPruner()
|
100 |
-
study = optuna.create_study(
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
|
|
|
|
|
111 |
print("Best trial:")
|
112 |
-
|
113 |
-
|
114 |
-
print(" Value: ", trial.value)
|
115 |
-
|
116 |
print(" Params: ")
|
117 |
-
for key, value in
|
118 |
print(" {}: {}".format(key, value))
|
119 |
-
|
120 |
-
# Close TensorBoard writer
|
121 |
-
writer.close()
|
|
|
9 |
import data_loader
|
10 |
from torch.utils.tensorboard import SummaryWriter
|
11 |
|
|
|
|
|
12 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
EPOCHS = 10
|
14 |
+
N_TRIALS = 50
|
15 |
+
TIMEOUT = 3600 # 1 hour
|
16 |
|
17 |
# Create a TensorBoard writer
|
18 |
+
writer = SummaryWriter(log_dir="output/tensorboard/tuning")
|
19 |
+
|
20 |
|
21 |
def create_data_loaders(batch_size):
|
22 |
# Create or modify data loaders with the specified batch size
|
23 |
train_loader, valid_loader = data_loader.load_data(
|
24 |
+
RAW_DATA_DIR + str(TASK),
|
25 |
+
AUG_DATA_DIR + str(TASK),
|
26 |
+
EXTERNAL_DATA_DIR + str(TASK),
|
27 |
+
preprocess,
|
28 |
+
batch_size=batch_size,
|
29 |
)
|
30 |
return train_loader, valid_loader
|
31 |
|
32 |
+
|
33 |
def objective(trial, model=MODEL):
|
34 |
# Generate the model.
|
35 |
model = model.to(DEVICE)
|
|
|
41 |
train_loader, valid_loader = create_data_loaders(batch_size)
|
42 |
|
43 |
# Generate the optimizer.
|
44 |
+
lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True)
|
45 |
+
optimizer = optim.Adam(model.parameters(), lr=lr)
|
|
|
46 |
criterion = nn.CrossEntropyLoss()
|
47 |
|
48 |
+
# Suggest the gamma parameter for the learning rate scheduler.
|
49 |
+
gamma = trial.suggest_float("gamma", 0.1, 1.0, step=0.1)
|
50 |
+
|
51 |
+
# Create a learning rate scheduler with the suggested gamma.
|
52 |
+
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=gamma)
|
53 |
+
|
54 |
# Training of the model.
|
55 |
for epoch in range(EPOCHS):
|
56 |
print(f"[Epoch: {epoch} | Trial: {trial.number}]")
|
|
|
58 |
for batch_idx, (data, target) in enumerate(train_loader, 0):
|
59 |
data, target = data.to(DEVICE), target.to(DEVICE)
|
60 |
optimizer.zero_grad()
|
61 |
+
if (
|
62 |
+
model.__class__.__name__ == "GoogLeNet"
|
63 |
+
): # the shit GoogLeNet has a different output
|
64 |
output = model(data).logits
|
65 |
else:
|
66 |
output = model(data)
|
67 |
loss = criterion(output, target)
|
68 |
loss.backward()
|
69 |
+
optimizer.step()
|
70 |
+
|
71 |
+
# Update the learning rate using the scheduler.
|
72 |
+
scheduler.step()
|
73 |
|
74 |
# Validation of the model.
|
75 |
model.eval()
|
|
|
87 |
# Log hyperparameters and accuracy to TensorBoard
|
88 |
writer.add_scalar("Accuracy", accuracy, trial.number)
|
89 |
writer.add_hparams(
|
90 |
+
{"batch_size": batch_size, "lr": lr, "gamma": gamma},
|
91 |
+
{"accuracy": accuracy},
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
|
94 |
# Print hyperparameters and accuracy
|
|
|
100 |
if trial.should_prune():
|
101 |
raise optuna.exceptions.TrialPruned()
|
102 |
|
103 |
+
if trial.number > 10 and trial.params["lr"] < 1e-3 and accuracy < 0.7:
|
104 |
+
return float("inf") # Prune the trial
|
105 |
+
|
106 |
return accuracy
|
107 |
|
108 |
+
|
109 |
if __name__ == "__main__":
|
110 |
pruner = optuna.pruners.HyperbandPruner()
|
111 |
+
study = optuna.create_study(
|
112 |
+
direction="maximize", # Adjust the direction as per your optimization goal
|
113 |
+
pruner=pruner,
|
114 |
+
study_name="hyperparameter_tuning",
|
115 |
+
)
|
116 |
|
117 |
+
# Optimize the hyperparameters
|
118 |
+
study.optimize(
|
119 |
+
objective, n_trials=100, timeout=3600
|
120 |
+
) # Adjust the number of trials and timeout as needed
|
121 |
|
122 |
+
# Print the best trial
|
123 |
+
best_trial = study.best_trial
|
124 |
print("Best trial:")
|
125 |
+
print(" Value: ", best_trial.value)
|
|
|
|
|
|
|
126 |
print(" Params: ")
|
127 |
+
for key, value in best_trial.params.items():
|
128 |
print(" {}: {}".format(key, value))
|
|
|
|
|
|