Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
from PIL import Image | |
import torch | |
import tqdm | |
from modules import processing, shared, images, devices, sd_models | |
from modules.shared import opts | |
import modules.gfpgan_model | |
from modules.ui import plaintext_to_html | |
import modules.codeformer_model | |
import piexif | |
import piexif.helper | |
import gradio as gr | |
cached_images = {} | |
def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): | |
devices.torch_gc() | |
imageArr = [] | |
# Also keep track of original file names | |
imageNameArr = [] | |
if extras_mode == 1: | |
#convert file to pillow image | |
for img in image_folder: | |
image = Image.fromarray(np.array(Image.open(img))) | |
imageArr.append(image) | |
imageNameArr.append(os.path.splitext(img.orig_name)[0]) | |
else: | |
imageArr.append(image) | |
imageNameArr.append(None) | |
outpath = opts.outdir_samples or opts.outdir_extras_samples | |
outputs = [] | |
for image, image_name in zip(imageArr, imageNameArr): | |
if image is None: | |
return outputs, "Please select an input image.", '' | |
existing_pnginfo = image.info or {} | |
image = image.convert("RGB") | |
info = "" | |
if gfpgan_visibility > 0: | |
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) | |
res = Image.fromarray(restored_img) | |
if gfpgan_visibility < 1.0: | |
res = Image.blend(image, res, gfpgan_visibility) | |
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n" | |
image = res | |
if codeformer_visibility > 0: | |
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) | |
res = Image.fromarray(restored_img) | |
if codeformer_visibility < 1.0: | |
res = Image.blend(image, res, codeformer_visibility) | |
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n" | |
image = res | |
if upscaling_resize != 1.0: | |
def upscale(image, scaler_index, resize): | |
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10)) | |
pixels = tuple(np.array(small).flatten().tolist()) | |
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels | |
c = cached_images.get(key) | |
if c is None: | |
upscaler = shared.sd_upscalers[scaler_index] | |
c = upscaler.scaler.upscale(image, resize, upscaler.data_path) | |
cached_images[key] = c | |
return c | |
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n" | |
res = upscale(image, extras_upscaler_1, upscaling_resize) | |
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0: | |
res2 = upscale(image, extras_upscaler_2, upscaling_resize) | |
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n" | |
res = Image.blend(res, res2, extras_upscaler_2_visibility) | |
image = res | |
while len(cached_images) > 2: | |
del cached_images[next(iter(cached_images.keys()))] | |
images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True, | |
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, | |
forced_filename=image_name if opts.use_original_name_batch else None) | |
outputs.append(image) | |
devices.torch_gc() | |
return outputs, plaintext_to_html(info), '' | |
def run_pnginfo(image): | |
if image is None: | |
return '', '', '' | |
items = image.info | |
geninfo = '' | |
if "exif" in image.info: | |
exif = piexif.load(image.info["exif"]) | |
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'') | |
try: | |
exif_comment = piexif.helper.UserComment.load(exif_comment) | |
except ValueError: | |
exif_comment = exif_comment.decode('utf8', errors="ignore") | |
items['exif comment'] = exif_comment | |
geninfo = exif_comment | |
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif', | |
'loop', 'background', 'timestamp', 'duration']: | |
items.pop(field, None) | |
geninfo = items.get('parameters', geninfo) | |
info = '' | |
for key, text in items.items(): | |
info += f""" | |
<div> | |
<p><b>{plaintext_to_html(str(key))}</b></p> | |
<p>{plaintext_to_html(str(text))}</p> | |
</div> | |
""".strip()+"\n" | |
if len(info) == 0: | |
message = "Nothing found in the image." | |
info = f"<div><p>{message}<p></div>" | |
return '', geninfo, info | |
def run_modelmerger(primary_model_name, secondary_model_name, interp_method, interp_amount, save_as_half, custom_name): | |
# Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation) | |
def weighted_sum(theta0, theta1, alpha): | |
return ((1 - alpha) * theta0) + (alpha * theta1) | |
# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep) | |
def sigmoid(theta0, theta1, alpha): | |
alpha = alpha * alpha * (3 - (2 * alpha)) | |
return theta0 + ((theta1 - theta0) * alpha) | |
# Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep) | |
def inv_sigmoid(theta0, theta1, alpha): | |
import math | |
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0) | |
return theta0 + ((theta1 - theta0) * alpha) | |
primary_model_info = sd_models.checkpoints_list[primary_model_name] | |
secondary_model_info = sd_models.checkpoints_list[secondary_model_name] | |
print(f"Loading {primary_model_info.filename}...") | |
primary_model = torch.load(primary_model_info.filename, map_location='cpu') | |
print(f"Loading {secondary_model_info.filename}...") | |
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu') | |
theta_0 = primary_model['state_dict'] | |
theta_1 = secondary_model['state_dict'] | |
theta_funcs = { | |
"Weighted Sum": weighted_sum, | |
"Sigmoid": sigmoid, | |
"Inverse Sigmoid": inv_sigmoid, | |
} | |
theta_func = theta_funcs[interp_method] | |
print(f"Merging...") | |
for key in tqdm.tqdm(theta_0.keys()): | |
if 'model' in key and key in theta_1: | |
theta_0[key] = theta_func(theta_0[key], theta_1[key], (float(1.0) - interp_amount)) # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint | |
if save_as_half: | |
theta_0[key] = theta_0[key].half() | |
for key in theta_1.keys(): | |
if 'model' in key and key not in theta_0: | |
theta_0[key] = theta_1[key] | |
if save_as_half: | |
theta_0[key] = theta_0[key].half() | |
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path | |
filename = primary_model_info.model_name + '_' + str(round(interp_amount, 2)) + '-' + secondary_model_info.model_name + '_' + str(round((float(1.0) - interp_amount), 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt' | |
filename = filename if custom_name == '' else (custom_name + '.ckpt') | |
output_modelname = os.path.join(ckpt_dir, filename) | |
print(f"Saving to {output_modelname}...") | |
torch.save(primary_model, output_modelname) | |
sd_models.list_models() | |
print(f"Checkpoint saved.") | |
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(3)] | |