Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import traceback | |
import torch | |
import tqdm | |
import html | |
import datetime | |
from modules import shared, devices, sd_hijack, processing, sd_models | |
import modules.textual_inversion.dataset | |
class Embedding: | |
def __init__(self, vec, name, step=None): | |
self.vec = vec | |
self.name = name | |
self.step = step | |
self.cached_checksum = None | |
self.sd_checkpoint = None | |
self.sd_checkpoint_name = None | |
def save(self, filename): | |
embedding_data = { | |
"string_to_token": {"*": 265}, | |
"string_to_param": {"*": self.vec}, | |
"name": self.name, | |
"step": self.step, | |
"sd_checkpoint": self.sd_checkpoint, | |
"sd_checkpoint_name": self.sd_checkpoint_name, | |
} | |
torch.save(embedding_data, filename) | |
def checksum(self): | |
if self.cached_checksum is not None: | |
return self.cached_checksum | |
def const_hash(a): | |
r = 0 | |
for v in a: | |
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF | |
return r | |
self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}' | |
return self.cached_checksum | |
class EmbeddingDatabase: | |
def __init__(self, embeddings_dir): | |
self.ids_lookup = {} | |
self.word_embeddings = {} | |
self.dir_mtime = None | |
self.embeddings_dir = embeddings_dir | |
def register_embedding(self, embedding, model): | |
self.word_embeddings[embedding.name] = embedding | |
ids = model.cond_stage_model.tokenizer([embedding.name], add_special_tokens=False)['input_ids'][0] | |
first_id = ids[0] | |
if first_id not in self.ids_lookup: | |
self.ids_lookup[first_id] = [] | |
self.ids_lookup[first_id] = sorted(self.ids_lookup[first_id] + [(ids, embedding)], key=lambda x: len(x[0]), reverse=True) | |
return embedding | |
def load_textual_inversion_embeddings(self): | |
mt = os.path.getmtime(self.embeddings_dir) | |
if self.dir_mtime is not None and mt <= self.dir_mtime: | |
return | |
self.dir_mtime = mt | |
self.ids_lookup.clear() | |
self.word_embeddings.clear() | |
def process_file(path, filename): | |
name = os.path.splitext(filename)[0] | |
data = torch.load(path, map_location="cpu") | |
# textual inversion embeddings | |
if 'string_to_param' in data: | |
param_dict = data['string_to_param'] | |
if hasattr(param_dict, '_parameters'): | |
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11 | |
assert len(param_dict) == 1, 'embedding file has multiple terms in it' | |
emb = next(iter(param_dict.items()))[1] | |
# diffuser concepts | |
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: | |
assert len(data.keys()) == 1, 'embedding file has multiple terms in it' | |
emb = next(iter(data.values())) | |
if len(emb.shape) == 1: | |
emb = emb.unsqueeze(0) | |
else: | |
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.") | |
vec = emb.detach().to(devices.device, dtype=torch.float32) | |
embedding = Embedding(vec, name) | |
embedding.step = data.get('step', None) | |
embedding.sd_checkpoint = data.get('hash', None) | |
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) | |
self.register_embedding(embedding, shared.sd_model) | |
for fn in os.listdir(self.embeddings_dir): | |
try: | |
fullfn = os.path.join(self.embeddings_dir, fn) | |
if os.stat(fullfn).st_size == 0: | |
continue | |
process_file(fullfn, fn) | |
except Exception: | |
print(f"Error loading emedding {fn}:", file=sys.stderr) | |
print(traceback.format_exc(), file=sys.stderr) | |
continue | |
print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.") | |
def find_embedding_at_position(self, tokens, offset): | |
token = tokens[offset] | |
possible_matches = self.ids_lookup.get(token, None) | |
if possible_matches is None: | |
return None, None | |
for ids, embedding in possible_matches: | |
if tokens[offset:offset + len(ids)] == ids: | |
return embedding, len(ids) | |
return None, None | |
def create_embedding(name, num_vectors_per_token, init_text='*'): | |
cond_model = shared.sd_model.cond_stage_model | |
embedding_layer = cond_model.wrapped.transformer.text_model.embeddings | |
ids = cond_model.tokenizer(init_text, max_length=num_vectors_per_token, return_tensors="pt", add_special_tokens=False)["input_ids"] | |
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0) | |
vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device) | |
for i in range(num_vectors_per_token): | |
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token] | |
fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt") | |
assert not os.path.exists(fn), f"file {fn} already exists" | |
embedding = Embedding(vec, name) | |
embedding.step = 0 | |
embedding.save(fn) | |
return fn | |
def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, create_image_every, save_embedding_every, template_file): | |
assert embedding_name, 'embedding not selected' | |
shared.state.textinfo = "Initializing textual inversion training..." | |
shared.state.job_count = steps | |
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') | |
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name) | |
if save_embedding_every > 0: | |
embedding_dir = os.path.join(log_directory, "embeddings") | |
os.makedirs(embedding_dir, exist_ok=True) | |
else: | |
embedding_dir = None | |
if create_image_every > 0: | |
images_dir = os.path.join(log_directory, "images") | |
os.makedirs(images_dir, exist_ok=True) | |
else: | |
images_dir = None | |
cond_model = shared.sd_model.cond_stage_model | |
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." | |
with torch.autocast("cuda"): | |
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) | |
hijack = sd_hijack.model_hijack | |
embedding = hijack.embedding_db.word_embeddings[embedding_name] | |
embedding.vec.requires_grad = True | |
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate) | |
losses = torch.zeros((32,)) | |
last_saved_file = "<none>" | |
last_saved_image = "<none>" | |
ititial_step = embedding.step or 0 | |
if ititial_step > steps: | |
return embedding, filename | |
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) | |
for i, (x, text) in pbar: | |
embedding.step = i + ititial_step | |
if embedding.step > steps: | |
break | |
if shared.state.interrupted: | |
break | |
with torch.autocast("cuda"): | |
c = cond_model([text]) | |
x = x.to(devices.device) | |
loss = shared.sd_model(x.unsqueeze(0), c)[0] | |
del x | |
losses[embedding.step % losses.shape[0]] = loss.item() | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
pbar.set_description(f"loss: {losses.mean():.7f}") | |
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: | |
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') | |
embedding.save(last_saved_file) | |
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: | |
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') | |
p = processing.StableDiffusionProcessingTxt2Img( | |
sd_model=shared.sd_model, | |
prompt=text, | |
steps=20, | |
do_not_save_grid=True, | |
do_not_save_samples=True, | |
) | |
processed = processing.process_images(p) | |
image = processed.images[0] | |
shared.state.current_image = image | |
image.save(last_saved_image) | |
last_saved_image += f", prompt: {text}" | |
shared.state.job_no = embedding.step | |
shared.state.textinfo = f""" | |
<p> | |
Loss: {losses.mean():.7f}<br/> | |
Step: {embedding.step}<br/> | |
Last prompt: {html.escape(text)}<br/> | |
Last saved embedding: {html.escape(last_saved_file)}<br/> | |
Last saved image: {html.escape(last_saved_image)}<br/> | |
</p> | |
""" | |
checkpoint = sd_models.select_checkpoint() | |
embedding.sd_checkpoint = checkpoint.hash | |
embedding.sd_checkpoint_name = checkpoint.model_name | |
embedding.cached_checksum = None | |
embedding.save(filename) | |
return embedding, filename | |