|
import streamlit as st |
|
from transformers import pipeline |
|
from gtts import gTTS |
|
import os |
|
|
|
|
|
|
|
def img2text(url): |
|
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") |
|
text = image_to_text_model(url)[0]["generated_text"] |
|
return text |
|
|
|
|
|
def text2story(text): |
|
story_generator = pipeline("text-generation", model="agentica-org/DeepScaleR-1.5B-Preview") |
|
story = story_generator(text, max_length=200, num_return_sequences=1)[0]['generated_text'] |
|
return story |
|
|
|
|
|
def text2audio(story_text): |
|
|
|
tts = gTTS(text=story_text, lang='en') |
|
|
|
audio_file = "story_audio.wav" |
|
tts.save(audio_file) |
|
return audio_file |
|
|
|
st.set_page_config(page_title="Your Image to Audio Story", |
|
page_icon="🦜") |
|
st.header("Turn Your Image to Audio Story") |
|
uploaded_file = st.file_uploader("Select an Image...") |
|
|
|
if uploaded_file is not None: |
|
print(uploaded_file) |
|
bytes_data = uploaded_file.getvalue() |
|
with open(uploaded_file.name, "wb") as file: |
|
file.write(bytes_data) |
|
st.image(uploaded_file, caption="Uploaded Image", |
|
use_column_width=True) |
|
|
|
|
|
st.text('Processing img2text...') |
|
scenario = img2text(uploaded_file.name) |
|
st.write(scenario) |
|
|
|
|
|
st.text('Generating a story...') |
|
story = text2story(scenario) |
|
st.write(story) |
|
|
|
|
|
st.text('Generating audio data...') |
|
audio_file = text2audio(story) |
|
|
|
|
|
if st.button("Play Audio"): |
|
with open(audio_file, "rb") as audio: |
|
audio_bytes = audio.read() |
|
st.audio(audio_bytes, |
|
format="audio/wav", |
|
start_time=0) |
|
|
|
if os.path.exists(audio_file): |
|
os.remove(audio_file) |