|
|
|
|
|
|
|
import os |
|
import json |
|
import math |
|
import torch |
|
import random |
|
import argparse |
|
from tqdm import tqdm |
|
from torch.utils.data import Dataset, DataLoader |
|
from safetensors.torch import load_file |
|
|
|
from flash_vstream.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
from flash_vstream.conversation import conv_templates, SeparatorStyle |
|
from flash_vstream.model.builder import load_pretrained_model |
|
from flash_vstream.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
def parse_args(): |
|
""" |
|
Parse command-line arguments. |
|
""" |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument('--video_dir', help='Directory containing video files.', required=True) |
|
parser.add_argument('--gt_file', help='Path to the ground truth file containing question.', required=True) |
|
parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True) |
|
parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True) |
|
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--conv-mode", type=str, default=None) |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--model-max-length", type=int, default=None) |
|
return parser.parse_args() |
|
|
|
|
|
class CustomDataset(Dataset): |
|
def __init__(self, questions, video_dir, tokenizer, image_processor, model_config): |
|
self.questions = questions |
|
self.video_dir = video_dir |
|
self.tokenizer = tokenizer |
|
self.image_processor = image_processor |
|
self.model_config = model_config |
|
|
|
def __getitem__(self, index): |
|
sample = self.questions[index] |
|
video_name = sample['video_id'] |
|
try: |
|
video_path = os.path.join(self.video_dir, video_name + '.safetensors') |
|
video_tensor = load_file(video_path)['feature'] |
|
except Exception as e: |
|
print(f'Dataset Exception: {e}, randomly choose one.') |
|
idx = random.randint(0, len(self.questions) - 1) |
|
return self.__getitem__(idx) |
|
qs = sample['question'] |
|
if self.model_config.mm_use_im_start_end: |
|
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs |
|
else: |
|
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs |
|
conv = conv_templates[args.conv_mode].copy() |
|
if 'system' in sample: |
|
conv.system = conv.system + ' ' + sample['system'] |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt') |
|
return input_ids, video_tensor |
|
|
|
def __len__(self): |
|
return len(self.questions) |
|
|
|
|
|
def create_data_loader(questions, video_dir, tokenizer, image_processor, model_config, batch_size=1, num_workers=2): |
|
assert batch_size == 1, "batch_size must be 1" |
|
dataset = CustomDataset(questions, video_dir, tokenizer, image_processor, model_config) |
|
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False) |
|
return data_loader |
|
|
|
|
|
def run_inference(args): |
|
""" |
|
Run inference on ActivityNet QA DataSet using the Video-ChatGPT model. |
|
|
|
Args: |
|
args: Command-line arguments. |
|
""" |
|
|
|
model_name = get_model_name_from_path(args.model_path) |
|
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.model_max_length) |
|
|
|
|
|
with open(args.gt_file) as file: |
|
gt_questions = json.load(file) |
|
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx) |
|
|
|
|
|
if not os.path.exists(args.output_dir): |
|
try: |
|
os.makedirs(args.output_dir) |
|
except Exception as e: |
|
print(f'mkdir Except: {e}') |
|
|
|
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] |
|
if args.num_chunks > 1: |
|
output_name = f"{args.num_chunks}_{args.chunk_idx}" |
|
else: |
|
output_name = args.output_name |
|
answers_file = os.path.join(args.output_dir, f"{output_name}.json") |
|
|
|
exist_id_set = set() |
|
if os.path.exists(answers_file): |
|
with open(answers_file) as f: |
|
exist_pred_contents = [json.loads(line) for line in f] |
|
exist_id_set = set([x['id'] for x in exist_pred_contents]) |
|
|
|
new_gt_questions = [] |
|
for sample in tqdm(gt_questions): |
|
if not sample['id'] in exist_id_set: |
|
new_gt_questions.append(sample) |
|
gt_questions = new_gt_questions |
|
|
|
data_loader = create_data_loader(gt_questions, args.video_dir, tokenizer, image_processor, model.config) |
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
|
|
with open(answers_file, "a") as ans_file: |
|
for data, sample in tqdm(zip(data_loader, gt_questions), desc=f"cuda:{args.chunk_idx} ", total=len(gt_questions)): |
|
input_ids, video_tensors = data |
|
input_ids = input_ids.to(device='cuda', non_blocking=True) |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
features=video_tensors.to(dtype=torch.float16, device='cuda', non_blocking=True), |
|
do_sample=True, |
|
temperature=0.002, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria], |
|
) |
|
input_token_len = input_ids.shape[1] |
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() |
|
if n_diff_input_output > 0: |
|
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
sample_set = { |
|
'id': sample['id'], |
|
'question': sample['question'], |
|
'answer': sample['answer'], |
|
'answer_type': sample['answer_type'] if 'answer_type' in sample else None, |
|
'pred': outputs |
|
} |
|
ans_file.write(json.dumps(sample_set) + "\n") |
|
ans_file.flush() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
run_inference(args) |
|
|