|
import torch |
|
from ..constants import * |
|
from ..conversation import conv_templates, SeparatorStyle |
|
from ..model.builder import load_pretrained_model |
|
from ..utils import disable_torch_init |
|
from ..mm_utils import tokenizer_image_token, KeywordsStoppingCriteria, get_model_name_from_path |
|
from PIL import Image |
|
import os |
|
from decord import VideoReader, cpu |
|
import numpy as np |
|
|
|
|
|
class Chat: |
|
def __init__(self, model_path, conv_mode="simple", load_8bit=False, load_4bit=False): |
|
disable_torch_init() |
|
model_name = get_model_name_from_path(model_path) |
|
self.tokenizer, self.model, self.image_processor, context_len = load_pretrained_model(model_path, None, model_name, load_8bit=load_8bit, load_4bit=load_4bit) |
|
|
|
mm_use_im_start_end = getattr(self.model.config, "mm_use_im_start_end", False) |
|
mm_use_im_patch_token = getattr(self.model.config, "mm_use_im_patch_token", True) |
|
if mm_use_im_patch_token: |
|
self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: |
|
self.tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
self.model.resize_token_embeddings(len(self.tokenizer)) |
|
|
|
vision_tower = self.model.get_vision_tower() |
|
if not vision_tower.is_loaded: |
|
vision_tower.load_model() |
|
|
|
self.image_processor = vision_tower.image_processor |
|
self.conv_mode = conv_mode |
|
print(self.model) |
|
|
|
def get_prompt(self, qs, state): |
|
state.append_message(state.roles[0], qs) |
|
state.append_message(state.roles[1], None) |
|
return state |
|
|
|
def _get_rawvideo_dec(self, video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224, |
|
video_framerate=1, s=None, e=None): |
|
if s is None: |
|
start_time, end_time = None, None |
|
else: |
|
start_time = int(s) |
|
end_time = int(e) |
|
start_time = start_time if start_time >= 0. else 0. |
|
end_time = end_time if end_time >= 0. else 0. |
|
if start_time > end_time: |
|
start_time, end_time = end_time, start_time |
|
elif start_time == end_time: |
|
end_time = start_time + 1 |
|
|
|
if os.path.exists(video_path): |
|
vreader = VideoReader(video_path, ctx=cpu(0)) |
|
else: |
|
print(video_path) |
|
raise FileNotFoundError |
|
|
|
fps = vreader.get_avg_fps() |
|
f_start = 0 if start_time is None else int(start_time * fps) |
|
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1)) |
|
num_frames = f_end - f_start + 1 |
|
if num_frames > 0: |
|
sample_fps = int(video_framerate) |
|
t_stride = int(round(float(fps) / sample_fps)) |
|
|
|
all_pos = list(range(f_start, f_end + 1, t_stride)) |
|
if len(all_pos) > max_frames: |
|
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)] |
|
else: |
|
sample_pos = all_pos |
|
|
|
patch_numpy = vreader.get_batch(sample_pos).asnumpy() |
|
print("patch_numpy", patch_numpy.shape) |
|
return patch_numpy |
|
|
|
@torch.inference_mode() |
|
def generate(self, images_tensor, prompt, first_run, state): |
|
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor |
|
|
|
state = self.get_prompt(prompt, state) |
|
prompt = state.get_prompt() |
|
print(prompt) |
|
|
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() |
|
|
|
temperature = 0.2 |
|
max_new_tokens = 1024 |
|
|
|
stop_str = conv_templates[self.conv_mode].copy().sep if conv_templates[self.conv_mode].copy().sep_style != SeparatorStyle.TWO else \ |
|
conv_templates[self.conv_mode].copy().sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=images_tensor, |
|
do_sample=True, |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria]) |
|
|
|
input_token_len = input_ids.shape[1] |
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() |
|
if n_diff_input_output > 0: |
|
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
|
|
print('response', outputs) |
|
return outputs, state |
|
|
|
|
|
|
|
title_markdown = (""" |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> |
|
<div> |
|
<h1 >Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams</h1> |
|
</div> |
|
</div> |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> |
|
<div style="display:flex; gap: 0.25rem;" align="center"> |
|
<a href="https://invinciblewyq.github.io/vstream-page/"><img src='https://img.shields.io/badge/Project-Page-Green'></a> |
|
<a href="https://arxiv.org/abs/2406.08085v1"><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> |
|
<a href='https://github.com/IVGSZ/Flash-VStream'><img src='https://img.shields.io/badge/Github-Code-blue'></a> |
|
</div> |
|
</div> |
|
""") |
|
|
|
block_css = """ |
|
#buttons button { |
|
min-width: min(120px,100%); |
|
} |
|
""" |
|
|