Spaces:
Runtime error
Runtime error
File size: 9,999 Bytes
ae3b630 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import torch
import torch.nn as nn
from torch.functional import Tensor
from torch.nn.modules.activation import Tanhshrink
from timm.models.layers import trunc_normal_
from functools import partial
class Ffn(nn.Module):
# feed forward network layer after attention
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, task_embed=None, level=0):
N, L, D = x.shape
qkv = self.qkv(x).reshape(N, L, 3, self.num_heads, D // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
# for decoder's task_embedding of different levels of attention layers
if task_embed != None:
_N, _H, _L, _D = q.shape
task_embed = task_embed.reshape(1, _H, _L, _D)
if level == 1:
q += task_embed
k += task_embed
if level == 2:
q += task_embed
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(N, L, D)
x = self.proj(x)
x = self.proj_drop(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.norm2 = norm_layer(dim)
ffn_hidden_dim = int(dim * ffn_ratio)
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.ffn(self.norm2(x))
return x
class DecoderLayer(nn.Module):
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn1 = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.norm2 = norm_layer(dim)
self.attn2 = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.norm3 = norm_layer(dim)
ffn_hidden_dim = int(dim * ffn_ratio)
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, task_embed):
x = x + self.attn1(self.norm1(x), task_embed=task_embed, level=1)
x = x + self.attn2(self.norm2(x), task_embed=task_embed, level=2)
x = x + self.ffn(self.norm3(x))
return x
class ResBlock(nn.Module):
def __init__(self, channels):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=5, stride=1,
padding=2, bias=False)
self.bn1 = nn.InstanceNorm2d(channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=5, stride=1,
padding=2, bias=False)
self.bn2 = nn.InstanceNorm2d(channels)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu(out)
return out
class Head(nn.Module):
def __init__(self, in_channels, out_channels):
super(Head, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1,
padding=1, bias=False)
self.bn1 = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.resblock = ResBlock(out_channels)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.resblock(out)
return out
class PatchEmbed(nn.Module):
""" Feature to Patch Embedding
input : N C H W
output: N num_patch P^2*C
"""
def __init__(self, patch_size=1, in_channels=64):
super().__init__()
self.patch_size = patch_size
self.dim = self.patch_size ** 2 * in_channels
def forward(self, x):
N, C, H, W = ori_shape = x.shape
p = self.patch_size
num_patches = (H // p) * (W // p)
out = torch.zeros((N, num_patches, self.dim)).to(x.device)
i, j = 0, 0
for k in range(num_patches):
if i + p > W:
i = 0
j += p
out[:, k, :] = x[:, :, i:i + p, j:j + p].flatten(1)
i += p
return out, ori_shape
class DePatchEmbed(nn.Module):
""" Patch Embedding to Feature
input : N num_patch P^2*C
output: N C H W
"""
def __init__(self, patch_size=1, in_channels=64):
super().__init__()
self.patch_size = patch_size
self.num_patches = None
self.dim = self.patch_size ** 2 * in_channels
def forward(self, x, ori_shape):
N, num_patches, dim = x.shape
_, C, H, W = ori_shape
p = self.patch_size
out = torch.zeros(ori_shape).to(x.device)
i, j = 0, 0
for k in range(num_patches):
if i + p > W:
i = 0
j += p
out[:, :, i:i + p, j:j + p] = x[:, k, :].reshape(N, C, p, p)
i += p
return out
class Tail(nn.Module):
def __init__(self, in_channels, out_channels):
super(Tail, self).__init__()
self.output = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
def forward(self, x):
out = self.output(x)
return out
class IllTr_Net(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, patch_size=1, in_channels=3, mid_channels=16, num_classes=1000, depth=12,
num_heads=8, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
norm_layer=nn.LayerNorm):
super(IllTr_Net, self).__init__()
self.num_classes = num_classes
self.embed_dim = patch_size * patch_size * mid_channels
self.head = Head(in_channels, mid_channels)
self.patch_embedding = PatchEmbed(patch_size=patch_size, in_channels=mid_channels)
self.embed_dim = self.patch_embedding.dim
if self.embed_dim % num_heads != 0:
raise RuntimeError("Embedding dim must be devided by numbers of heads")
self.pos_embed = nn.Parameter(torch.zeros(1, (128 // patch_size) ** 2, self.embed_dim))
self.task_embed = nn.Parameter(torch.zeros(6, 1, (128 // patch_size) ** 2, self.embed_dim))
self.encoder = nn.ModuleList([
EncoderLayer(
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
for _ in range(depth)])
self.decoder = nn.ModuleList([
DecoderLayer(
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
for _ in range(depth)])
self.de_patch_embedding = DePatchEmbed(patch_size=patch_size, in_channels=mid_channels)
# tail
self.tail = Tail(int(mid_channels), in_channels)
self.acf = nn.Hardtanh(0,1)
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
x = self.head(x)
x, ori_shape = self.patch_embedding(x)
x = x + self.pos_embed[:, :x.shape[1]]
for blk in self.encoder:
x = blk(x)
for blk in self.decoder:
x = blk(x, self.task_embed[0, :, :x.shape[1]])
x = self.de_patch_embedding(x, ori_shape)
x = self.tail(x)
x = self.acf(x)
return x
def IllTr(**kwargs):
model = IllTr_Net(
patch_size=4, depth=6, num_heads=8, ffn_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model
|