File size: 19,579 Bytes
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d03890
dd217c7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""

from __future__ import annotations
from typing import Optional
import math

import torch
from torch import nn
import torch.nn.functional as F
import torchaudio

from einops import rearrange
from x_transformers.x_transformers import apply_rotary_pos_emb


# raw wav to mel spec

class MelSpec(nn.Module):
    def __init__(
        self,
        filter_length = 1024,
        hop_length = 256,
        win_length = 1024,
        n_mel_channels = 100,
        target_sample_rate = 24_000,
        normalize = False,
        power = 1,
        norm = None,
        center = True,
    ):
        super().__init__()
        self.n_mel_channels = n_mel_channels

        self.mel_stft = torchaudio.transforms.MelSpectrogram(
            sample_rate = target_sample_rate,
            n_fft = filter_length,
            win_length = win_length,
            hop_length = hop_length,
            n_mels = n_mel_channels,
            power = power,
            center = center,
            normalized = normalize,
            norm = norm,
        )

        self.register_buffer('dummy', torch.tensor(0), persistent = False)

    def forward(self, inp):
        if len(inp.shape) == 3:
            inp = rearrange(inp, 'b 1 nw -> b nw')

        assert len(inp.shape) == 2

        if self.dummy.device != inp.device:
            self.to(inp.device)

        mel = self.mel_stft(inp)
        mel = mel.clamp(min = 1e-5).log()
        return mel
    

# sinusoidal position embedding

class SinusPositionEmbedding(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x, scale=1000):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
        emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


# convolutional position embedding

class ConvPositionEmbedding(nn.Module):
    def __init__(self, dim, kernel_size = 31, groups = 16):
        super().__init__()
        assert kernel_size % 2 != 0
        self.conv1d = nn.Sequential(
            nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2),
            nn.Mish(),
            nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2),
            nn.Mish(),
        )

    def forward(self, x: float['b n d'], mask: bool['b n'] | None  = None):
        if mask is not None:
            mask = mask[..., None]
            x = x.masked_fill(~mask, 0.)

        x = rearrange(x, 'b n d -> b d n')
        x = self.conv1d(x)
        out = rearrange(x, 'b d n -> b n d')

        if mask is not None:
            out = out.masked_fill(~mask, 0.)

        return out


# rotary positional embedding related

def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.):
    # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
    # has some connection to NTK literature
    # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
    # https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
    theta *= theta_rescale_factor ** (dim / (dim - 2))
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    freqs_cos = torch.cos(freqs)  # real part
    freqs_sin = torch.sin(freqs)  # imaginary part
    return torch.cat([freqs_cos, freqs_sin], dim=-1)

def get_pos_embed_indices(start, length, max_pos, scale=1.):
    # length = length if isinstance(length, int) else length.max()
    scale = scale * torch.ones_like(start, dtype=torch.float32)  # in case scale is a scalar
    pos = start.unsqueeze(1) + (
            torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) *
            scale.unsqueeze(1)).long()
    # avoid extra long error.
    pos = torch.where(pos < max_pos, pos, max_pos - 1)
    return pos


# Global Response Normalization layer (Instance Normalization ?)

class GRN(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=1, keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x


# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108

class ConvNeXtV2Block(nn.Module):
    def __init__(
        self,
        dim: int,
        intermediate_dim: int,
        dilation: int = 1,
    ):
        super().__init__()
        padding = (dilation * (7 - 1)) // 2
        self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation)  # depthwise conv
        self.norm = nn.LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, intermediate_dim)  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.grn = GRN(intermediate_dim)
        self.pwconv2 = nn.Linear(intermediate_dim, dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        residual = x
        x = x.transpose(1, 2)  # b n d -> b d n
        x = self.dwconv(x)
        x = x.transpose(1, 2)  # b d n -> b n d
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.grn(x)
        x = self.pwconv2(x)
        return residual + x


# AdaLayerNormZero
# return with modulated x for attn input, and params for later mlp modulation

class AdaLayerNormZero(nn.Module):
    def __init__(self, dim):
        super().__init__()

        self.silu = nn.SiLU()
        self.linear = nn.Linear(dim, dim * 6)

        self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, emb = None):
        emb = self.linear(self.silu(emb))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)

        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp


# AdaLayerNormZero for final layer
# return only with modulated x for attn input, cuz no more mlp modulation

class AdaLayerNormZero_Final(nn.Module):
    def __init__(self, dim):
        super().__init__()

        self.silu = nn.SiLU()
        self.linear = nn.Linear(dim, dim * 2)

        self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, emb):
        emb = self.linear(self.silu(emb))
        scale, shift = torch.chunk(emb, 2, dim=1)

        x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
        return x


# FeedForward

class FeedForward(nn.Module):
    def __init__(self, dim, dim_out = None, mult = 4, dropout = 0., approximate: str = 'none'):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim

        activation = nn.GELU(approximate=approximate)
        project_in = nn.Sequential(
            nn.Linear(dim, inner_dim),
            activation
        )
        self.ff = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
            nn.Linear(inner_dim, dim_out)
        )

    def forward(self, x):
        return self.ff(x)


# Attention with possible joint part
# modified from diffusers/src/diffusers/models/attention_processor.py

class Attention(nn.Module):
    def __init__(
        self,
        processor: JointAttnProcessor | AttnProcessor,
        dim: int,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        context_dim: Optional[int] = None, # if not None -> joint attention
        context_pre_only = None,
    ):
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

        self.processor = processor

        self.dim = dim
        self.heads = heads
        self.inner_dim = dim_head * heads
        self.dropout = dropout

        self.context_dim = context_dim
        self.context_pre_only = context_pre_only

        self.to_q = nn.Linear(dim, self.inner_dim)
        self.to_k = nn.Linear(dim, self.inner_dim)
        self.to_v = nn.Linear(dim, self.inner_dim)

        if self.context_dim is not None:
            self.to_k_c = nn.Linear(context_dim, self.inner_dim)
            self.to_v_c = nn.Linear(context_dim, self.inner_dim)
            if self.context_pre_only is not None:
                self.to_q_c = nn.Linear(context_dim, self.inner_dim)

        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(self.inner_dim, dim))
        self.to_out.append(nn.Dropout(dropout))

        if self.context_pre_only is not None and not self.context_pre_only:
            self.to_out_c = nn.Linear(self.inner_dim, dim)

    def forward(
        self,
        x: float['b n d'], # noised input x
        c: float['b n d'] = None,  # context c
        mask: bool['b n'] | None = None,
        rope = None,  # rotary position embedding for x
        c_rope = None,  # rotary position embedding for c
    ) -> torch.Tensor:
        if c is not None:
            return self.processor(self, x, c = c, mask = mask, rope = rope, c_rope = c_rope)
        else:
            return self.processor(self, x, mask = mask, rope = rope)


# Attention processor

class AttnProcessor:
    def __init__(self):
        pass

    def __call__(
        self,
        attn: Attention,
        x: float['b n d'], # noised input x
        mask: bool['b n'] | None = None,
        rope = None,  # rotary position embedding
    ) -> torch.FloatTensor:

        batch_size = x.shape[0]

        # `sample` projections.
        query = attn.to_q(x)
        key = attn.to_k(x)
        value = attn.to_v(x)

        # apply rotary position embedding
        if rope is not None:
            freqs, xpos_scale = rope
            q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.)

            query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
            key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)

        # attention
        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # mask. e.g. inference got a batch with different target durations, mask out the padding
        if mask is not None:
            attn_mask = mask
            attn_mask = rearrange(attn_mask, 'b n -> b 1 1 n')
            attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
        else:
            attn_mask = None

        x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
        x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        x = x.to(query.dtype)

        # linear proj
        x = attn.to_out[0](x)
        # dropout
        x = attn.to_out[1](x)

        if mask is not None:
            mask = rearrange(mask, 'b n -> b n 1')
            x = x.masked_fill(~mask, 0.)

        return x
    

# Joint Attention processor for MM-DiT
# modified from diffusers/src/diffusers/models/attention_processor.py

class JointAttnProcessor:
    def __init__(self):
        pass

    def __call__(
        self,
        attn: Attention,
        x: float['b n d'], # noised input x
        c: float['b nt d'] = None,  # context c, here text
        mask: bool['b n'] | None = None,
        rope = None,  # rotary position embedding for x
        c_rope = None,  # rotary position embedding for c
    ) -> torch.FloatTensor:
        residual = x

        batch_size = c.shape[0]

        # `sample` projections.
        query = attn.to_q(x)
        key = attn.to_k(x)
        value = attn.to_v(x)

        # `context` projections.
        c_query = attn.to_q_c(c)
        c_key = attn.to_k_c(c)
        c_value = attn.to_v_c(c)

        # apply rope for context and noised input independently
        if rope is not None:
            freqs, xpos_scale = rope
            q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.)
            query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
            key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
        if c_rope is not None:
            freqs, xpos_scale = c_rope
            q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.)
            c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
            c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)

        # attention
        query = torch.cat([query, c_query], dim=1)
        key = torch.cat([key, c_key], dim=1)
        value = torch.cat([value, c_value], dim=1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # mask. e.g. inference got a batch with different target durations, mask out the padding
        if mask is not None:
            attn_mask = F.pad(mask, (0, c.shape[1]), value = True)  # no mask for c (text)
            attn_mask = rearrange(attn_mask, 'b n -> b 1 1 n')
            attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
        else:
            attn_mask = None

        x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
        x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        x = x.to(query.dtype)

        # Split the attention outputs.
        x, c = (
            x[:, :residual.shape[1]],
            x[:, residual.shape[1]:],
        )

        # linear proj
        x = attn.to_out[0](x)
        # dropout
        x = attn.to_out[1](x)
        if not attn.context_pre_only:
            c = attn.to_out_c(c)

        if mask is not None:
            mask = rearrange(mask, 'b n -> b n 1')
            x = x.masked_fill(~mask, 0.)
            # c = c.masked_fill(~mask, 0.)  # no mask for c (text)

        return x, c


# DiT Block

class DiTBlock(nn.Module):

    def __init__(self, dim, heads, dim_head, ff_mult = 4, dropout = 0.1):
        super().__init__()
        
        self.attn_norm = AdaLayerNormZero(dim)
        self.attn = Attention(
            processor = AttnProcessor(),
            dim = dim,
            heads = heads,
            dim_head = dim_head,
            dropout = dropout,
            )
        
        self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh")

    def forward(self, x, t, mask = None, rope = None): # x: noised input, t: time embedding
        # pre-norm & modulation for attention input
        norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)

        # attention
        attn_output = self.attn(x=norm, mask=mask, rope=rope)

        # process attention output for input x
        x = x + gate_msa.unsqueeze(1) * attn_output
        
        norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        ff_output = self.ff(norm)
        x = x + gate_mlp.unsqueeze(1) * ff_output

        return x


# MMDiT Block https://arxiv.org/abs/2403.03206

class MMDiTBlock(nn.Module):
    r""" 
    modified from diffusers/src/diffusers/models/attention.py

    notes.
    _c: context related. text, cond, etc. (left part in sd3 fig2.b)
    _x: noised input related. (right part)
    context_pre_only: last layer only do prenorm + modulation cuz no more ffn
    """

    def __init__(self, dim, heads, dim_head, ff_mult = 4, dropout = 0.1, context_pre_only = False):
        super().__init__()

        self.context_pre_only = context_pre_only
        
        self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
        self.attn_norm_x = AdaLayerNormZero(dim)
        self.attn = Attention(
            processor = JointAttnProcessor(),
            dim = dim,
            heads = heads,
            dim_head = dim_head,
            dropout = dropout,
            context_dim = dim,
            context_pre_only = context_pre_only,
            )

        if not context_pre_only:
            self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
            self.ff_c = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh")
        else:
            self.ff_norm_c = None
            self.ff_c = None
        self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff_x = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh")

    def forward(self, x, c, t, mask = None, rope = None, c_rope = None): # x: noised input, c: context, t: time embedding
        # pre-norm & modulation for attention input
        if self.context_pre_only:
            norm_c = self.attn_norm_c(c, t)
        else:
            norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
        norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)

        # attention
        x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)

        # process attention output for context c
        if self.context_pre_only:
            c = None
        else: # if not last layer
            c = c + c_gate_msa.unsqueeze(1) * c_attn_output

            norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
            c_ff_output = self.ff_c(norm_c)
            c = c + c_gate_mlp.unsqueeze(1) * c_ff_output

        # process attention output for input x
        x = x + x_gate_msa.unsqueeze(1) * x_attn_output
        
        norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
        x_ff_output = self.ff_x(norm_x)
        x = x + x_gate_mlp.unsqueeze(1) * x_ff_output

        return c, x


# time step conditioning embedding

class TimestepEmbedding(nn.Module):
    def __init__(self, dim, freq_embed_dim=256):
        super().__init__()
        self.time_embed = SinusPositionEmbedding(freq_embed_dim)
        self.time_mlp = nn.Sequential(
            nn.Linear(freq_embed_dim, dim),
            nn.SiLU(),
            nn.Linear(dim, dim)
        )

    def forward(self, timestep: float['b']):
        time_hidden = self.time_embed(timestep)
        time_hidden = time_hidden.to(timestep.dtype)
        time = self.time_mlp(time_hidden)  # b d
        return time