--- title: DmxMetric emoji: 🌖 colorFrom: purple colorTo: pink sdk: gradio sdk_version: 4.41.0 app_file: app.py pinned: false license: apache-2.0 tags: - evaluate - metric description: >- Evaluation function using lm-eval with d-Matrix integration. This function allows for the evaluation of language models across various tasks, with the option to use d-Matrix compressed models. For more information, see https://github.com/EleutherAI/lm-evaluation-harness and https://github.com/d-matrix-ai/dmx-compressor --- # Metric Card for dmxMetric ## How to Use ```python >>>import evaluate >>>metric = evaluate.load("d-matrix/dmxMetric", module_type="metric") >>>results = metric._compute(model="d-matrix/gpt2",revision="distilgpt2",tasks="wikitext",dmx_config="BASIC" ) >>>print(results) ``` ### Inputs - **model** (`str`): The name or path of the model to evaluate. - **tasks** (`Union[str, List[str]]`): The task or list of tasks to evaluate on. - **dmx_config** (`Optional[str]`): Configuration string for d-Matrix transformations, defaults to None. - **num_fewshot** (`Optional[int]`): Number of examples in few-shot context, defaults to None. - **batch_size** (`Optional[Union[int, str]]`): Batch size for evaluation, defaults to None. - **max_batch_size** (`Optional[int]`): Maximum batch size to try with automatic batch size detection, defaults to None. - **limit** (`Optional[Union[int, float]]`): Limit the number of examples per task, defaults to None. - **device** (`Optional[str]`): Device to run on, defaults to 'cuda' when available, otherwise 'cpu'. - **revision** (`str`): Model revision to use, defaults to 'main'. - **trust_remote_code** (`bool`): Whether to trust remote code, defaults to False. - **log_samples** (`bool`): If True, logs all model outputs and documents, defaults to True. - **verbosity** (`str`): Logging verbosity level, defaults to 'INFO'. - **kwargs**: Additional keyword arguments to pass to `lm_eval.evaluate`. ### Output Values - **results** (`dict`): A dictionary containing the evaluation results for each task. Output Example: ```python { 'wikitext': { 'alias': 'wikitext', 'word_perplexity,none': 56.66175009356436, 'word_perplexity_stderr,none': 'N/A', 'byte_perplexity,none': 2.127521665015424, 'byte_perplexity_stderr,none': 'N/A', 'bits_per_byte,none': 1.0891738232631387, 'bits_per_byte_stderr,none': 'N/A' } } ``` This metric outputs a dictionary containing the evaluation results for each task. In this example, the results are shown for the 'wikitext' task. The output includes various perplexity and bits-per-byte metrics, along with their standard errors (where available). The specific metrics may include: - `alias`: The name or alias of the task. - `word_perplexity,none`: The perplexity calculated on a word level. - `word_perplexity_stderr,none`: The standard error of the word perplexity (if available). - `byte_perplexity,none`: The perplexity calculated on a byte level. - `byte_perplexity_stderr,none`: The standard error of the byte perplexity (if available). - `bits_per_byte,none`: The average number of bits required to encode each byte of the text. - `bits_per_byte_stderr,none`: The standard error of the bits per byte metric (if available). Note that 'N/A' values indicate that the standard error was not calculated or not available for that metric. ## Citation(s) https://github.com/EleutherAI/lm-evaluation-harness