import re from transformers import AutoModelForSeq2SeqLM, AutoTokenizer def summarize(text, model): if model == "T5": checkpoint = "csebuetnlp/mT5_multilingual_XLSum" elif model == "BART": checkpoint = "ai4bharat/IndicBART" WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) input_ids = tokenizer( [WHITESPACE_HANDLER(text)], return_tensors="pt", padding="max_length", truncation=True, max_length=512 )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=70, min_length=30, no_repeat_ngram_size=2, num_beams=4 )[0] summary = tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return summary