d221's picture
Update app.py
3e68be8 verified
raw
history blame
2.83 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
import json
import pytesseract
from PIL import Image
import PyPDF2
from io import BytesIO
import docx
# Initialize clients
API_KEY = os.environ.get("HF_API_KEY")
client = InferenceClient(token=API_KEY)
def process_file(file):
"""Handle different file types and extract text"""
if file is None:
return ""
# Get file extension
ext = file.name.split('.')[-1].lower()
try:
if ext in ['png', 'jpg', 'jpeg']:
# OCR processing for images
image = Image.open(file.name)
text = pytesseract.image_to_string(image)
return f"IMAGE CONTENT:\n{text}"
elif ext == 'pdf':
# PDF text extraction
pdf_reader = PyPDF2.PdfReader(file.name)
text = "\n".join([page.extract_text() for page in pdf_reader.pages])
return f"PDF CONTENT:\n{text}"
elif ext == 'docx':
# Word document processing
doc = docx.Document(file.name)
text = "\n".join([para.text for para in doc.paragraphs])
return f"DOCUMENT CONTENT:\n{text}"
else:
return "Unsupported file type"
except Exception as e:
print(f"File processing error: {e}")
return "Error reading file"
def chat(message, history, file):
# Process uploaded file
file_content = process_file(file) if file else ""
# Build enhanced prompt
full_prompt = f"""
{file_content}
User Message: {message}
Please respond considering both the message and any attached documents:"""
# Configure generation parameters
generate_kwargs = dict(
temperature=0.7,
max_new_tokens=2000,
top_p=0.95,
repetition_penalty=1.2,
)
# Generate response
stream = client.text_generation(
full_prompt,
stream=True,
details=True,
**generate_kwargs
)
partial_message = ""
for response in stream:
if response.token.special:
continue
partial_message += response.token.text
yield partial_message
# Create Gradio interface with file upload
with gr.Blocks(theme="soft") as demo:
gr.Markdown("# DeepSeek-R1 Assistant with File Support")
gr.Markdown("Upload images, PDFs, or docs and chat about them!")
with gr.Row():
file_input = gr.File(label="Upload File (PDF/Image/Doc)", type="file")
chatbot = gr.ChatInterface(
fn=chat,
additional_inputs=[file_input],
examples=[
["Explain this document", "report.pdf"],
["What's in this image?", "screenshot.png"]
]
)
demo.launch()