Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,110 @@
|
|
1 |
-
|
2 |
import os
|
3 |
import groq
|
4 |
-
import phi
|
5 |
-
import phi.api
|
6 |
-
|
7 |
from dotenv import load_dotenv
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
from
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
|
18 |
-
phi.api = os.getenv("PHI_API_KEY")
|
19 |
-
groq_api_key = os.getenv("GROQ_API_KEY")
|
20 |
|
21 |
-
# 2.
|
22 |
-
groq_client = groq.Client(api_key=groq_api_key)
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
# Websearch Agent
|
27 |
websearch_agent = Agent(
|
28 |
-
name=
|
29 |
-
role="
|
30 |
-
|
31 |
-
tools=[GoogleSearch()],
|
32 |
-
instructions=["Always include the sources for the information in APA format."],
|
33 |
-
markdown=True,
|
34 |
-
# debug_mode=True,
|
35 |
)
|
36 |
|
37 |
-
# Youtube Agent
|
38 |
youtube_agent = Agent(
|
39 |
-
name="YouTube Agent",
|
40 |
-
role="
|
41 |
-
|
42 |
-
tools=[YouTubeTools()],
|
43 |
-
instructions=[
|
44 |
-
"1. When the user asks about a video, confirm that they have provided a valid YouTube URL. If not, ask them for it.",
|
45 |
-
"2. Using a video URL, get the video data using the get_youtube_video_data tool. Using the video data, get the video captions using the get_youtube_video_captions tool.",
|
46 |
-
"3. Using the data and captions, answer the user questions in an engaging and thoughtful manner and only focus on the important information.",
|
47 |
-
"4. If you cannot find the information, let the user know by asking for more details, and don't hallucinate.",
|
48 |
-
"5. Keep your answers concise and engaging."
|
49 |
-
],
|
50 |
-
markdown=True,
|
51 |
-
read_chat_history=True,
|
52 |
-
# debug_mode=True,
|
53 |
)
|
54 |
|
55 |
-
# Financial Agent
|
56 |
finance_agent = Agent(
|
57 |
-
name="Finance
|
58 |
-
|
59 |
-
|
60 |
-
YFinanceTools(
|
61 |
-
stock_price=True,
|
62 |
-
analyst_recommendations=True,
|
63 |
-
stock_fundamentals=True,
|
64 |
-
company_news=True
|
65 |
-
),
|
66 |
-
],
|
67 |
-
description="You are an investment analyst that researches stock prices, analyst recommendations, and stock fundamentals.",
|
68 |
-
instructions=["Format your response using markdown and use tables to display data where possible."],
|
69 |
-
markdown=True,
|
70 |
-
# debug_mode=True,
|
71 |
)
|
72 |
|
73 |
-
# Multi-Model Agent
|
74 |
-
MultiModelAgent = Agent(
|
75 |
-
team=[websearch_agent, finance_agent, youtube_agent],
|
76 |
-
model=Groq(id="llama-3.3-70b-versatile"),
|
77 |
-
name="Multi-Model Agent",
|
78 |
-
instructions=["Always include sources and use tables to display data where possible."],
|
79 |
-
show_tool_calls=True,
|
80 |
-
markdown=True,
|
81 |
-
# debug_mode=True,
|
82 |
-
)
|
83 |
|
84 |
-
# 4.
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
|
|
|
|
1 |
import os
|
2 |
import groq
|
|
|
|
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
# 1. Environment and Groq Client Setup
|
8 |
+
|
9 |
+
load_dotenv() # Load environment variables from .env
|
10 |
+
|
11 |
+
# Retrieve the API key and model identifier from environment variables
|
12 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
13 |
+
GROQ_MODEL_ID = os.getenv("GROQ_MODEL_ID", "llama-3.3-70b-versatile")
|
14 |
|
15 |
+
# Initialize the Groq client (adjust this based on your actual Groq API)
|
16 |
+
groq_client = groq.Client(api_key=GROQ_API_KEY)
|
17 |
|
|
|
|
|
18 |
|
19 |
+
# 2. Define a Simple Agent Class Using Groq
|
|
|
20 |
|
21 |
+
class Agent:
|
22 |
+
def __init__(self, name, role, instructions):
|
23 |
+
self.name = name
|
24 |
+
self.role = role
|
25 |
+
self.instructions = instructions
|
26 |
+
|
27 |
+
def build_prompt(self, query):
|
28 |
+
# Construct a prompt that provides context for the agent
|
29 |
+
prompt = (
|
30 |
+
f"Agent Name: {self.name}\n"
|
31 |
+
f"Role: {self.role}\n"
|
32 |
+
f"Instructions: {self.instructions}\n"
|
33 |
+
f"User Query: {query}\n"
|
34 |
+
"Response:"
|
35 |
+
)
|
36 |
+
return prompt
|
37 |
+
|
38 |
+
def respond(self, query):
|
39 |
+
prompt = self.build_prompt(query)
|
40 |
+
# Call Groq Cloud API to generate a response (adjust parameters as needed)
|
41 |
+
response = groq_client.generate(
|
42 |
+
model_id=GROQ_MODEL_ID,
|
43 |
+
prompt=prompt,
|
44 |
+
max_tokens=200
|
45 |
+
)
|
46 |
+
# Assume the API returns a dict with a 'text' field for the generated response
|
47 |
+
return response.get("text", "")
|
48 |
+
|
49 |
+
|
50 |
+
# 3. Define Specific Agents
|
51 |
|
|
|
52 |
websearch_agent = Agent(
|
53 |
+
name="WebSearch Agent",
|
54 |
+
role="Searches the web for financial information and the latest news.",
|
55 |
+
instructions="Return results with sources in APA format."
|
|
|
|
|
|
|
|
|
56 |
)
|
57 |
|
|
|
58 |
youtube_agent = Agent(
|
59 |
+
name="YouTube Agent",
|
60 |
+
role="Analyzes YouTube videos that are less than 22 minutes in duration.",
|
61 |
+
instructions="Provide concise and engaging answers based on the video content."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
|
|
|
64 |
finance_agent = Agent(
|
65 |
+
name="Finance Agent",
|
66 |
+
role="Analyzes stock prices, analyst recommendations, and fundamentals.",
|
67 |
+
instructions="Format your response using markdown tables where applicable."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# 4. Build a Multi-Agent Coordinator
|
72 |
+
|
73 |
+
class MultiAgent:
|
74 |
+
def __init__(self, agents):
|
75 |
+
self.agents = agents
|
76 |
+
|
77 |
+
def handle_query(self, query):
|
78 |
+
# For the given query, ask each agent and collect their responses
|
79 |
+
responses = {}
|
80 |
+
for agent in self.agents:
|
81 |
+
responses[agent.name] = agent.respond(query)
|
82 |
+
return responses
|
83 |
+
|
84 |
+
# Create a multi-agent system with the defined agents
|
85 |
+
multi_agent = MultiAgent([websearch_agent, youtube_agent, finance_agent])
|
86 |
+
|
87 |
+
|
88 |
+
# 5. Gradio Chatbot Front End Function
|
89 |
+
|
90 |
+
def chat_response(user_query):
|
91 |
+
responses = multi_agent.handle_query(user_query)
|
92 |
+
# Format the responses into a single markdown string for display
|
93 |
+
result = ""
|
94 |
+
for agent_name, response in responses.items():
|
95 |
+
result += f"**{agent_name}**:\n{response}\n\n"
|
96 |
+
return result
|
97 |
+
|
98 |
+
|
99 |
+
# 6. Create the Gradio Interface
|
100 |
+
|
101 |
+
demo = gr.Interface(
|
102 |
+
fn=chat_response,
|
103 |
+
inputs=gr.Textbox(placeholder="Enter your message here...", lines=2),
|
104 |
+
outputs="markdown",
|
105 |
+
title="Groq Agent Chatbot",
|
106 |
+
description="A chatbot powered by Groq Cloud for GPT inference with multiple agents."
|
107 |
+
)
|
108 |
|
109 |
+
if __name__ == "__main__":
|
110 |
+
demo.launch()
|