Qdrant_Backend / retriever.py
d221's picture
Upload 9 files
c13ddd0 verified
raw
history blame
705 Bytes
from langchain.vectorstores import Qdrant
from langchain.embeddings import SentenceTransformerEmbeddings
from qdrant_client import QdrantClient
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings")
url = "http://localhost:6333"
client = QdrantClient(
url=url, prefer_grpc=False
)
print(client)
print("##############")
db = Qdrant(client=client, embeddings=embeddings, collection_name="vector_db")
print(db)
print("######")
query = "What is Metastatic disease?"
docs = db.similarity_search_with_score(query=query, k=3)
for i in docs:
doc, score = i
print({"score": score, "content": doc.page_content, "metadata": doc.metadata})