Qdrant_Backend / ingest.py
d221's picture
Update ingest.py
248efe2 verified
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.document_loaders import DirectoryLoader
from langchain.document_loaders import PyPDFLoader
from langchain.vectorstores import Qdrant
from qdrant_client import QdrantClient
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings")
client = QdrantClient(
url=os.getenv("QDRANT_URL", "https://QDRANT_URL.europe-west3-0.gcp.cloud.qdrant.io"),
api_key=os.getenv("QDRANT_API_KEY"),
prefer_grpc=False
)
loader = DirectoryLoader('data/', glob="**/*.pdf", show_progress=True, loader_cls=PyPDFLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
qdrant = Qdrant.from_documents(
texts,
embeddings,
client=client,
collection_name="vector_db"
)
#print("Vector DB Successfully Created!")