Qdrant_Backend / retriever.py
d221's picture
Update retriever.py
0a15116 verified
raw
history blame contribute delete
957 Bytes
from langchain.vectorstores import Qdrant
from langchain.embeddings import SentenceTransformerEmbeddings
from qdrant_client import QdrantClient
import os # Added for environment variables
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings")
# Use environment variables for cloud configuration
client = QdrantClient(
url=os.getenv("QDRANT_URL", "https://QDRANT_URL.europe-west3-0.gcp.cloud.qdrant.io"),
api_key=os.getenv("QDRANT_API_KEY"),
prefer_grpc=False
)
print(client)
print("##############")
db = Qdrant(client=client, embeddings=embeddings, collection_name="vector_db")
print(db)
print("######")
query = "What is Metastatic disease?"
# Updated similarity search (newer LangChain versions)
docs = db.similarity_search_with_relevance_scores(query=query, k=1)
for doc, score in docs:
print({
"score": score,
"content": doc.page_content,
"metadata": doc.metadata
})