from langchain import PromptTemplate from langchain.llms import CTransformers from langchain.chains import RetrievalQA from langchain.embeddings import SentenceTransformerEmbeddings from fastapi import FastAPI, Request, Form, Response from fastapi.responses import HTMLResponse from fastapi.templating import Jinja2Templates from fastapi.staticfiles import StaticFiles from fastapi.encoders import jsonable_encoder from qdrant_client import QdrantClient from langchain.vectorstores import Qdrant import os import json app = FastAPI() templates = Jinja2Templates(directory="templates") app.mount("/static", StaticFiles(directory="static"), name="static") local_llm = "joshnader/meditron-7b-Q4_K_M-GGUF" config = { 'max_new_tokens': 512, 'context_length': 2048, 'repetition_penalty': 1.1, 'temperature': 0.1, 'top_k': 50, 'top_p': 0.9, 'stream': True, 'threads': int(os.cpu_count() / 4) } llm = CTransformers( model=local_llm, model_type="llama", **config ) print("LLM Initialized....") prompt_template = """Use the following pieces of information to answer the user's question. If you don't know the answer, just say that you don't know, don't try to make up an answer. Context: {context} Question: {question} Only return the helpful answer below and nothing else. Helpful answer: """ embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings") client = QdrantClient( url=os.getenv("QDRANT_URL", "https://QDRANT_URL.aws.cloud.qdrant.io"), api_key=os.getenv("QDRANT_API_KEY"), prefer_grpc=False ) db = Qdrant(client=client, embeddings=embeddings, collection_name="vector_db") prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question']) retriever = db.as_retriever(search_kwargs={"k":1}) @app.get("/", response_class=HTMLResponse) async def read_root(request: Request): return templates.TemplateResponse("index.html", {"request": request}) @app.post("/get_response") async def get_response(query: str = Form(...)): chain_type_kwargs = {"prompt": prompt} qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs=chain_type_kwargs, verbose=True) response = qa(query) print(response) answer = response['result'] source_document = response['source_documents'][0].page_content doc = response['source_documents'][0].metadata['source'] response_data = jsonable_encoder(json.dumps({"answer": answer, "source_document": source_document, "doc": doc})) res = Response(response_data) return res