from langchain.vectorstores import Qdrant from langchain.embeddings import SentenceTransformerEmbeddings from qdrant_client import QdrantClient import os # Added for environment variables embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings") # Use environment variables for cloud configuration client = QdrantClient( url=os.getenv("QDRANT_URL", "https://QDRANT_URL.europe-west3-0.gcp.cloud.qdrant.io"), api_key=os.getenv("QDRANT_API_KEY"), prefer_grpc=False ) print(client) print("##############") db = Qdrant(client=client, embeddings=embeddings, collection_name="vector_db") print(db) print("######") query = "What is Metastatic disease?" # Updated similarity search (newer LangChain versions) docs = db.similarity_search_with_relevance_scores(query=query, k=1) for doc, score in docs: print({ "score": score, "content": doc.page_content, "metadata": doc.metadata })