from langchain.vectorstores import Qdrant from langchain.embeddings import SentenceTransformerEmbeddings from qdrant_client import QdrantClient embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings") url = "http://localhost:6333" client = QdrantClient( url=url, prefer_grpc=False ) print(client) print("##############") db = Qdrant(client=client, embeddings=embeddings, collection_name="vector_db") print(db) print("######") query = "What is Metastatic disease?" docs = db.similarity_search_with_score(query=query, k=3) for i in docs: doc, score = i print({"score": score, "content": doc.page_content, "metadata": doc.metadata})