--- title: Medical RAG with Meditron-7B-LLM emoji: 📚 colorFrom: blue colorTo: indigo sdk: docker sdk_version: 20.10.17 app_file: app.py pinned: false license: apache-2.0 short_description: A specialized AI assistant for medical information retrieval --- # Medical RAG QA System A Retrieval-Augmented Generation (RAG) system for medical question answering using: - Meditron-7B LLM - Qdrant Vector Database - PubMedBERT Embeddings [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) [![Model Card](https://img.shields.io/badge/🤗%20Model-MedITRON--7B--GGUF-blue)](https://huggingface.co/joshnader/meditron-7b-Q4_K_M-GGUF) ## Features - PDF document ingestion - Semantic search with medical embeddings - LLM-powered question answering - Source document citation ## 🚀 Usage 1. **Query Interface**: ```python import requests response = requests.post("https://d221/Qdrant_Backend.hf.space/get_response", data={"query": "What are the symptoms of diabetes?"}) print(response.json())