Spaces:
Runtime error
Runtime error
File size: 5,576 Bytes
806ab1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import gradio as gr
import pandas as pd
from pathlib import Path
import os
css_style = """
.gradio-container {
font-family: "IBM Plex Mono";
}
"""
def request_pathname(files, data, openai_api_key, index):
if files is None:
return [[]]
for file in files:
# make sure we're not duplicating things in the dataset
if file.name in [x[0] for x in data]:
continue
data.append([file.name, None, None])
mydataset = pd.DataFrame(data, columns=["filepath", "citation string", "key"])
validation, index = validate_dataset(mydataset, openai_api_key, index)
return (
[[len(data), 0]],
data,
data,
validation,
index
)
def validate_dataset(dataset, openapi, index):
docs_ready = dataset.iloc[-1, 0] != ""
if docs_ready and type(openapi) is str and len(openapi) > 0:
os.environ["OPENAI_API_KEY"] = openapi.strip()
index = get_index(dataset, openapi, index)
return "✨Ready✨", index
elif docs_ready:
return "⚠️Waiting for key⚠️", index
elif type(openapi) is str and len(openapi) > 0:
return "⚠️Waiting for documents⚠️", index
else:
return "⚠️Waiting for documents and key⚠️", index
def get_index(dataset, openapi, index):
docs_ready = dataset.iloc[-1, 0] != ""
if docs_ready and type(openapi) is str and len(openapi) > 0:
from langchain.document_loaders import PyPDFLoader
from langchain.vectorstores import DocArrayInMemorySearch
from IPython.display import display, Markdown
from langchain.indexes import VectorstoreIndexCreator
# myfile = "Angela Merkel - Wikipedia.pdf"
# loader = PyPDFLoader(file_path=myfile)
loader = PyPDFLoader(file_path=dataset["filepath"][0])
index = VectorstoreIndexCreator(
vectorstore_cls=DocArrayInMemorySearch
).from_loaders([loader])
return index
def make_stats(docs):
return [[len(docs.doc_previews), sum([x[0] for x in docs.doc_previews])]]
def do_ask(question, button, openapi, dataset, index):
passages = ""
docs_ready = dataset.iloc[-1, 0] != ""
out = ''
if button == "✨Ready✨" and type(openapi) is str and len(openapi) > 0 and docs_ready:
# "Please provide a summary of signifcant personal life events of Angela Merkel. Of that summary extract all events with dates and put these into a markdown table."
# limit = f' Limit your answer to a maxmium of {length} words.'
query = question # + limit
response = index.query(query)
out = response
yield out, index
with gr.Blocks(css=css_style) as demo:
docs = gr.State()
data = gr.State([])
openai_api_key = gr.State("")
gr.Markdown(
"""
# Document Question and Answer
*By D8a.ai*
Based on https://huggingface.co/spaces/whitead/paper-qa
Significant advances in langchain have made it possible to simplify the code.
This tool allows you to ask questions of your uploaded text, PDF documents.
It uses OpenAI's GPT models, so you need to enter your API key below. This
tool is under active development and currently uses a lot of tokens - up to 10,000
for a single query. This is $0.10-0.20 per query, so please be careful!
* [langchain](https://github.com/hwchase17/langchain) is the main library this tool utilizes.
1. Enter API Key ([What is that?](https://platform.openai.com/account/api-keys))
2. Upload your documents
3. Ask a questions
"""
)
openai_api_key = gr.Textbox(
label="OpenAI API Key", placeholder="sk-...", type="password"
)
with gr.Tab("File Upload"):
uploaded_files = gr.File(
label="Your Documents Upload (PDF or txt)",
file_count="multiple",
)
with gr.Accordion("See Docs:", open=False):
dataset = gr.Dataframe(
headers=["filepath", "citation string", "key"],
datatype=["str", "str", "str"],
col_count=(3, "fixed"),
interactive=False,
label="Documents and Citations",
overflow_row_behaviour="paginate",
max_rows=5,
)
buildb = gr.Textbox(
"⚠️Waiting for documents and key...",
label="Status",
interactive=False,
show_label=True,
max_lines=1,
)
index = gr.State()
stats = gr.Dataframe(
headers=["Docs", "Chunks"],
datatype=["number", "number"],
col_count=(2, "fixed"),
interactive=False,
label="Doc Stats",
)
openai_api_key.change(
validate_dataset, inputs=[dataset, openai_api_key], outputs=[buildb, index]
)
dataset.change(validate_dataset, inputs=[dataset, openai_api_key, index], outputs=[buildb, index])
uploaded_files.change(
request_pathname,
inputs=[uploaded_files, data, openai_api_key, index],
outputs=[stats, data, dataset, buildb, index],
)
query = gr.Textbox(placeholder="Enter your question here...", label="Question")
# with gr.Row():
# length = gr.Slider(25, 200, value=100, step=5, label="Words in answer")
ask = gr.Button("Ask Question")
answer = gr.Markdown(label="Answer")
ask.click(
do_ask,
inputs=[query, buildb, openai_api_key, dataset, index],
outputs=[answer, index],
)
demo.queue(concurrency_count=20)
demo.launch(show_error=True)
|