File size: 5,576 Bytes
806ab1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import gradio as gr
import pandas as pd
from pathlib import Path
import os

css_style = """
.gradio-container {
    font-family: "IBM Plex Mono";
}
"""


def request_pathname(files, data, openai_api_key, index):
    if files is None:
        return [[]]
    for file in files:
        # make sure we're not duplicating things in the dataset
        if file.name in [x[0] for x in data]:
            continue
        data.append([file.name, None, None])
    
    mydataset = pd.DataFrame(data, columns=["filepath", "citation string", "key"])
    
    validation, index = validate_dataset(mydataset, openai_api_key, index)
    
    return (
        [[len(data), 0]],
        data,
        data,
        validation, 
        index
    )


def validate_dataset(dataset, openapi, index):
    docs_ready = dataset.iloc[-1, 0] != ""
    
    if docs_ready and type(openapi) is str and len(openapi) > 0:
        os.environ["OPENAI_API_KEY"] = openapi.strip()
        index = get_index(dataset, openapi, index)
        return "✨Ready✨", index
    elif docs_ready:
        return "⚠️Waiting for key⚠️", index
    elif type(openapi) is str and len(openapi) > 0:
        return "⚠️Waiting for documents⚠️", index
    else:
        return "⚠️Waiting for documents and key⚠️", index
    
    
def get_index(dataset, openapi, index):

    docs_ready = dataset.iloc[-1, 0] != ""

    if docs_ready and type(openapi) is str and len(openapi) > 0:
        from langchain.document_loaders import PyPDFLoader
        from langchain.vectorstores import DocArrayInMemorySearch
        from IPython.display import display, Markdown
        from langchain.indexes import VectorstoreIndexCreator

        # myfile = "Angela Merkel - Wikipedia.pdf"
        # loader = PyPDFLoader(file_path=myfile)

        loader = PyPDFLoader(file_path=dataset["filepath"][0])

        index = VectorstoreIndexCreator(
            vectorstore_cls=DocArrayInMemorySearch
        ).from_loaders([loader])

    return index    


def make_stats(docs):
    return [[len(docs.doc_previews), sum([x[0] for x in docs.doc_previews])]]


def do_ask(question, button, openapi, dataset, index):
    passages = ""
    docs_ready = dataset.iloc[-1, 0] != ""
    out = ''
    if button == "✨Ready✨" and type(openapi) is str and len(openapi) > 0 and docs_ready:


    # "Please provide a summary of  signifcant personal life events of  Angela Merkel. Of that summary extract all events with dates and put these into a markdown table."
    # limit = f' Limit your answer to a maxmium of {length} words.'
    
        query =   question # + limit

        response = index.query(query)
        out = response
    
    yield out, index


with gr.Blocks(css=css_style) as demo:
    docs = gr.State()
    data = gr.State([])
    openai_api_key = gr.State("")

    gr.Markdown(
        """
    # Document Question and Answer
    
    *By D8a.ai*

    Based on https://huggingface.co/spaces/whitead/paper-qa
    
    Significant advances in langchain have made it possible to simplify the code.

    This tool allows you to ask questions of your uploaded text, PDF documents.

    It uses OpenAI's GPT models, so you need to enter your API key below. This
    tool is under active development and currently uses a lot of tokens - up to 10,000
    for a single query. This is $0.10-0.20 per query, so please be careful!
    
    * [langchain](https://github.com/hwchase17/langchain) is the main library this tool utilizes.
    1. Enter API Key ([What is that?](https://platform.openai.com/account/api-keys))
    2. Upload your documents
    3. Ask a questions
    """
    )

    openai_api_key = gr.Textbox(
        label="OpenAI API Key", placeholder="sk-...", type="password"
    )
    with gr.Tab("File Upload"):
        uploaded_files = gr.File(
            label="Your Documents Upload (PDF or txt)",
            file_count="multiple",
        )

    with gr.Accordion("See Docs:", open=False):
        dataset = gr.Dataframe(
            headers=["filepath", "citation string", "key"],
            datatype=["str", "str", "str"],
            col_count=(3, "fixed"),
            interactive=False,
            label="Documents and Citations",
            overflow_row_behaviour="paginate",
            max_rows=5,
        )


    buildb = gr.Textbox(
        "⚠️Waiting for documents and key...",
        label="Status",
        interactive=False,
        show_label=True,
        max_lines=1,
    )
    
    index = gr.State()
        
    stats = gr.Dataframe(
        headers=["Docs", "Chunks"],
        datatype=["number", "number"],
        col_count=(2, "fixed"),
        interactive=False,
        label="Doc Stats",
    )
    openai_api_key.change(
        validate_dataset, inputs=[dataset, openai_api_key], outputs=[buildb, index]
    )
    dataset.change(validate_dataset, inputs=[dataset, openai_api_key, index], outputs=[buildb, index])
    
    
    uploaded_files.change(
        request_pathname,
        inputs=[uploaded_files, data, openai_api_key, index],
        outputs=[stats, data, dataset, buildb, index],
    )

    query = gr.Textbox(placeholder="Enter your question here...", label="Question")

    # with gr.Row():
    #     length = gr.Slider(25, 200, value=100, step=5, label="Words in answer")
    ask = gr.Button("Ask Question")
    answer = gr.Markdown(label="Answer")

    ask.click(
        do_ask,
        inputs=[query, buildb, openai_api_key, dataset, index],
        outputs=[answer, index],
    )

demo.queue(concurrency_count=20)
demo.launch(show_error=True)