Spaces:
Runtime error
Runtime error
Commit
·
6a9b66f
1
Parent(s):
23c2d7a
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,218 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
1 |
+
import os
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
import gradio as gr
|
5 |
+
import openai
|
6 |
+
import pandas as pd
|
7 |
+
from IPython.display import Markdown, display
|
8 |
+
from langchain.document_loaders import PyPDFLoader
|
9 |
+
from langchain.embeddings import OpenAIEmbeddings
|
10 |
+
from langchain.indexes import VectorstoreIndexCreator
|
11 |
+
from langchain.text_splitter import CharacterTextSplitter
|
12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
+
from langchain.llms import OpenAI
|
14 |
+
from langchain.vectorstores import DocArrayInMemorySearch
|
15 |
+
from uuid import uuid4
|
16 |
+
|
17 |
+
css_style = """
|
18 |
+
.gradio-container {
|
19 |
+
font-family: "IBM Plex Mono";
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
|
23 |
+
|
24 |
+
class myClass:
|
25 |
+
def __init__(self) -> None:
|
26 |
+
self.openapi = ""
|
27 |
+
self.valid_key = False
|
28 |
+
self.docs_ready = False
|
29 |
+
self.status = "⚠️Waiting for documents and key⚠️"
|
30 |
+
self.uuid = uuid4()
|
31 |
+
pass
|
32 |
+
|
33 |
+
def check_status(self):
|
34 |
+
if self.docs_ready and self.valid_key:
|
35 |
+
out = "✨Ready✨"
|
36 |
+
elif self.docs_ready:
|
37 |
+
out = "⚠️Waiting for key⚠️"
|
38 |
+
elif self.valid_key:
|
39 |
+
out = "⚠️Waiting for documents⚠️"
|
40 |
+
else:
|
41 |
+
out = "⚠️Waiting for documents and key⚠️"
|
42 |
+
|
43 |
+
self.status = out
|
44 |
+
|
45 |
+
def validate_key(self, myin):
|
46 |
+
assert isinstance(myin, str)
|
47 |
+
self.valid_key = True
|
48 |
+
self.openai_api_key = myin.strip()
|
49 |
+
self.embedding = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
|
50 |
+
self.llm = OpenAI(openai_api_key=self.openai_api_key)
|
51 |
+
|
52 |
+
self.check_status()
|
53 |
+
return [self.status]
|
54 |
+
|
55 |
+
def request_pathname(self, files, data):
|
56 |
+
if files is None:
|
57 |
+
self.docs_ready = False
|
58 |
+
self.check_status()
|
59 |
+
return (
|
60 |
+
pd.DataFrame(data, columns=["filepath", "citation string", "key"]),
|
61 |
+
self.status,
|
62 |
+
)
|
63 |
+
for file in files:
|
64 |
+
# make sure we're not duplicating things in the dataset
|
65 |
+
if file.name in [x[0] for x in data]:
|
66 |
+
continue
|
67 |
+
data.append([file.name, None, None])
|
68 |
+
|
69 |
+
mydataset = pd.DataFrame(data, columns=["filepath", "citation string", "key"])
|
70 |
+
validation_button = self.validate_dataset(mydataset)
|
71 |
+
|
72 |
+
return mydataset, validation_button
|
73 |
+
|
74 |
+
def validate_dataset(self, dataset):
|
75 |
+
self.docs_ready = dataset.iloc[-1, 0] != ""
|
76 |
+
self.dataset = dataset
|
77 |
+
|
78 |
+
self.check_status()
|
79 |
+
|
80 |
+
if self.status == "✨Ready✨":
|
81 |
+
self.get_index()
|
82 |
+
|
83 |
+
return self.status
|
84 |
+
|
85 |
+
def get_index(self):
|
86 |
+
if self.docs_ready and self.valid_key:
|
87 |
+
# os.environ["OPENAI_API_KEY"] = self.openai_api_key
|
88 |
+
|
89 |
+
# myfile = "Angela Merkel - Wikipedia.pdf"
|
90 |
+
# loader = PyPDFLoader(file_path=myfile)
|
91 |
+
loaders = [PyPDFLoader(f) for f in self.dataset["filepath"]]
|
92 |
+
|
93 |
+
self.index = VectorstoreIndexCreator(
|
94 |
+
vectorstore_cls=DocArrayInMemorySearch,
|
95 |
+
embedding=self.embedding,
|
96 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
97 |
+
# Set a really small chunk size, just to show.
|
98 |
+
chunk_size = 1000,
|
99 |
+
chunk_overlap = 20,
|
100 |
+
length_function = len,
|
101 |
+
separators="."
|
102 |
+
)
|
103 |
+
|
104 |
+
).from_loaders(loaders=loaders)
|
105 |
+
|
106 |
+
# del os.environ["OPENAI_API_KEY"]
|
107 |
+
|
108 |
+
pass
|
109 |
+
|
110 |
+
def do_ask(self, question):
|
111 |
+
# os.environ["OPENAI_API_KEY"] = self.openai_api_key
|
112 |
+
# openai.api_key = self.openai_api_key
|
113 |
+
|
114 |
+
if self.status == "✨Ready✨":
|
115 |
+
# os.environ["OPENAI_API_KEY"] = self.openai_api_key
|
116 |
+
|
117 |
+
response = self.index.query(question=question, llm=self.llm)
|
118 |
+
# del os.environ["OPENAI_API_KEY"]
|
119 |
+
yield response
|
120 |
+
pass
|
121 |
+
|
122 |
+
|
123 |
+
def validate_key(myInstance: myClass, openai_api_key):
|
124 |
+
if myInstance is None:
|
125 |
+
myInstance = myClass()
|
126 |
+
|
127 |
+
out = myInstance.validate_key(openai_api_key)
|
128 |
+
return myInstance, *out
|
129 |
+
|
130 |
+
|
131 |
+
def request_pathname(myInstance: myClass, files, data):
|
132 |
+
if myInstance is None:
|
133 |
+
myInstance = myClass()
|
134 |
+
out = myInstance.request_pathname(files, data)
|
135 |
+
return myInstance, *out
|
136 |
+
|
137 |
+
|
138 |
+
def do_ask(myInstance: myClass, question):
|
139 |
+
out = myInstance.do_ask(question)
|
140 |
+
return myInstance, *out
|
141 |
+
|
142 |
+
|
143 |
+
with gr.Blocks(css=css_style) as demo:
|
144 |
+
myInstance = gr.State()
|
145 |
+
openai_api_key = gr.State("")
|
146 |
+
docs = gr.State()
|
147 |
+
data = gr.State([])
|
148 |
+
index = gr.State()
|
149 |
+
|
150 |
+
gr.Markdown(
|
151 |
+
"""
|
152 |
+
# Document Question and Answer
|
153 |
+
*By D8a.ai*
|
154 |
+
Idea based on https://huggingface.co/spaces/whitead/paper-qa
|
155 |
+
Significant advances in langchain have made it possible to simplify the code.
|
156 |
+
This tool allows you to ask questions of your uploaded text, PDF documents.
|
157 |
+
It uses OpenAI's GPT models, so you need to enter your API key below. This
|
158 |
+
tool is under active development and currently uses a lot of tokens - up to 10,000
|
159 |
+
for a single query. This is $0.10-0.20 per query, so please be careful!
|
160 |
+
* [langchain](https://github.com/hwchase17/langchain) is the main library this tool utilizes.
|
161 |
+
1. Enter API Key ([What is that?](https://platform.openai.com/account/api-keys))
|
162 |
+
2. Upload your documents
|
163 |
+
3. Ask questions
|
164 |
+
"""
|
165 |
+
)
|
166 |
+
|
167 |
+
openai_api_key = gr.Textbox(
|
168 |
+
label="OpenAI API Key", placeholder="sk-...", type="password"
|
169 |
+
)
|
170 |
+
with gr.Tab("File upload"):
|
171 |
+
uploaded_files = gr.File(
|
172 |
+
label="Upload your pdf Dokument", file_count="multiple"
|
173 |
+
)
|
174 |
+
|
175 |
+
with gr.Accordion("See Docs:", open=False):
|
176 |
+
dataset = gr.Dataframe(
|
177 |
+
headers=["filepath", "citation string", "key"],
|
178 |
+
datatype=["str", "str", "str"],
|
179 |
+
col_count=(3, "fixed"),
|
180 |
+
interactive=False,
|
181 |
+
label="Documents and Citations",
|
182 |
+
overflow_row_behaviour="paginate",
|
183 |
+
max_rows=5,
|
184 |
+
)
|
185 |
+
|
186 |
+
buildb = gr.Textbox(
|
187 |
+
"⚠️Waiting for documents and key...",
|
188 |
+
label="Status",
|
189 |
+
interactive=False,
|
190 |
+
show_label=True,
|
191 |
+
max_lines=1,
|
192 |
+
)
|
193 |
+
|
194 |
+
query = gr.Textbox(placeholder="Enter your question here...", label="Question")
|
195 |
+
ask = gr.Button("Ask Question")
|
196 |
+
answer = gr.Markdown(label="Answer")
|
197 |
+
|
198 |
+
openai_api_key.change(
|
199 |
+
validate_key, inputs=[myInstance, openai_api_key], outputs=[myInstance, buildb]
|
200 |
+
)
|
201 |
+
|
202 |
+
uploaded_files.change(
|
203 |
+
request_pathname,
|
204 |
+
inputs=[myInstance, uploaded_files, data],
|
205 |
+
outputs=[myInstance, dataset, buildb],
|
206 |
+
)
|
207 |
+
|
208 |
+
ask.click(
|
209 |
+
do_ask,
|
210 |
+
inputs=[myInstance, query],
|
211 |
+
outputs=[myInstance, answer],
|
212 |
+
)
|
213 |
+
|
214 |
+
|
215 |
|
|
|
|
|
216 |
|
217 |
+
demo.queue(concurrency_count=20)
|
218 |
+
demo.launch(show_error=True)
|