import gradio as gr import pandas as pd from pathlib import Path import os css_style = """ .gradio-container { font-family: "IBM Plex Mono"; } """ def request_pathname(files, data, openai_api_key, index): if files is None: return [[]] for file in files: # make sure we're not duplicating things in the dataset if file.name in [x[0] for x in data]: continue data.append([file.name, None, None]) mydataset = pd.DataFrame(data, columns=["filepath", "citation string", "key"]) validation, index = validate_dataset(mydataset, openai_api_key, index) return ( [[len(data), 0]], data, data, validation, index ) def validate_dataset(dataset, openapi, index): docs_ready = dataset.iloc[-1, 0] != "" if docs_ready and type(openapi) is str and len(openapi) > 0: os.environ["OPENAI_API_KEY"] = openapi.strip() index = get_index(dataset, openapi, index) return "✨Ready✨", index elif docs_ready: return "⚠️Waiting for key⚠️", index elif type(openapi) is str and len(openapi) > 0: return "⚠️Waiting for documents⚠️", index else: return "⚠️Waiting for documents and key⚠️", index def get_index(dataset, openapi, index): docs_ready = dataset.iloc[-1, 0] != "" if docs_ready and type(openapi) is str and len(openapi) > 0: from langchain.document_loaders import PyPDFLoader from langchain.vectorstores import DocArrayInMemorySearch from IPython.display import display, Markdown from langchain.indexes import VectorstoreIndexCreator # myfile = "Angela Merkel - Wikipedia.pdf" # loader = PyPDFLoader(file_path=myfile) loader = PyPDFLoader(file_path=dataset["filepath"][0]) index = VectorstoreIndexCreator( vectorstore_cls=DocArrayInMemorySearch ).from_loaders([loader]) return index def make_stats(docs): return [[len(docs.doc_previews), sum([x[0] for x in docs.doc_previews])]] def do_ask(question, button, openapi, dataset, index): passages = "" docs_ready = dataset.iloc[-1, 0] != "" out = '' if button == "✨Ready✨" and type(openapi) is str and len(openapi) > 0 and docs_ready: # "Please provide a summary of signifcant personal life events of Angela Merkel. Of that summary extract all events with dates and put these into a markdown table." # limit = f' Limit your answer to a maxmium of {length} words.' query = question # + limit response = index.query(query) out = response yield out, index with gr.Blocks(css=css_style) as demo: docs = gr.State() data = gr.State([]) openai_api_key = gr.State("") gr.Markdown( """ # Document Question and Answer *By D8a.ai* Based on https://huggingface.co/spaces/whitead/paper-qa Significant advances in langchain have made it possible to simplify the code. This tool allows you to ask questions of your uploaded text, PDF documents. It uses OpenAI's GPT models, so you need to enter your API key below. This tool is under active development and currently uses a lot of tokens - up to 10,000 for a single query. This is $0.10-0.20 per query, so please be careful! * [langchain](https://github.com/hwchase17/langchain) is the main library this tool utilizes. 1. Enter API Key ([What is that?](https://platform.openai.com/account/api-keys)) 2. Upload your documents 3. Ask a questions """ ) openai_api_key = gr.Textbox( label="OpenAI API Key", placeholder="sk-...", type="password" ) with gr.Tab("File Upload"): uploaded_files = gr.File( label="Your Documents Upload (PDF or txt)", file_count="multiple", ) with gr.Accordion("See Docs:", open=False): dataset = gr.Dataframe( headers=["filepath", "citation string", "key"], datatype=["str", "str", "str"], col_count=(3, "fixed"), interactive=False, label="Documents and Citations", overflow_row_behaviour="paginate", max_rows=5, ) buildb = gr.Textbox( "⚠️Waiting for documents and key...", label="Status", interactive=False, show_label=True, max_lines=1, ) index = gr.State() stats = gr.Dataframe( headers=["Docs", "Chunks"], datatype=["number", "number"], col_count=(2, "fixed"), interactive=False, label="Doc Stats", ) openai_api_key.change( validate_dataset, inputs=[dataset, openai_api_key], outputs=[buildb, index] ) dataset.change(validate_dataset, inputs=[dataset, openai_api_key, index], outputs=[buildb, index]) uploaded_files.change( request_pathname, inputs=[uploaded_files, data, openai_api_key, index], outputs=[stats, data, dataset, buildb, index], ) query = gr.Textbox(placeholder="Enter your question here...", label="Question") # with gr.Row(): # length = gr.Slider(25, 200, value=100, step=5, label="Words in answer") ask = gr.Button("Ask Question") answer = gr.Markdown(label="Answer") ask.click( do_ask, inputs=[query, buildb, openai_api_key, dataset, index], outputs=[answer, index], ) demo.queue(concurrency_count=20) demo.launch(show_error=True)