Spaces:
Sleeping
Sleeping
File size: 6,189 Bytes
a91d85c cbf9eb3 2e34479 cbf9eb3 a91d85c cbf9eb3 b9b3a61 cbf9eb3 a91d85c cbf9eb3 a91d85c cbf9eb3 8a24dae cbf9eb3 8a24dae cbf9eb3 a91d85c cbf9eb3 b9b3a61 cbf9eb3 b9b3a61 cbf9eb3 2e34479 1feb601 b9b3a61 cbf9eb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import streamlit as st
import streamlit as st
import pandas as pd
import script.functions as fn
import plotly.express as px
import matplotlib.pyplot as plt
# import text_proc in script folder
import script.text_proc as tp
from sentence_transformers import SentenceTransformer
st.set_page_config(
page_title="twitter sentiment analysis",
page_icon="π",
)
st.sidebar.markdown("π Twitter Sentiment Analysis App")
# Load data
# add tiwtter logo inside title
st.markdown("<h1 style='text-align: center;'>π Twitter Sentiment Analysis App</h1>", unsafe_allow_html=True)
st.write("Aplikasi sederhana untuk melakukan analisis sentimen terhadap tweet yang diinputkan dan mengekstrak topik dari setiap sentimen.")
# streamlit selectbox simple and advanced
sb1,sb2 = st.columns([2,4])
with sb1:
option = st.selectbox('Pilih Mode Pencarian',('Simple','Advanced'))
with sb2:
option_model = st.selectbox('Pilih Model',("IndoBERT (Accurate,Slow) ",'Naive Bayes','Logistic Regression (Less Accurate,Fast)','XGBoost','Catboost','SVM','Random Forest'))
if option == 'Simple':
# create col1 and col2
col1, col2 = st.columns([3,2])
with col1:
input = st.text_input("Masukkan User/Hastag", "@traveloka")
with col2:
length = st.number_input("Jumlah Tweet", 10, 500, 100)
else :
col1, col2 = st.columns([3,1])
with col1:
input = st.text_input("Masukkan Parameter Pencarian", "(to:@traveloka AND @traveloka) -filter:links filter:replies lang:id")
with col2:
length = st.number_input("Jumlah Tweet", 10, 500, 100)
st.caption("anda bisa menggunakan parameter pencarian yang lebih spesifik, parameter ini sama dengan paremeter pencarian di twitter")
submit = st.button("πCari Tweet")
st.caption("semakin banyak tweet yang diambil maka semakin lama proses analisis sentimen")
if submit:
with st.spinner('Mengambil data dari twitter... (1/2)'):
df = fn.get_tweets(input, length, option)
with st.spinner('Melakukan Prediksi Sentimen... (2/2)'):
df = fn.get_sentiment(df,option_model)
df.to_csv('assets/data.csv',index=False)
# plot
st.write("<b>Preview Dataset</b>",unsafe_allow_html=True)
def color_sentiment(val):
color_dict = {"positif": "#00cc96", "negatif": "#ef553b","netral": "#636efa"}
return f'color: {color_dict[val]}'
st.dataframe(df.style.applymap(color_sentiment, subset=['sentiment']),use_container_width=True,height = 200)
# st.dataframe(df,use_container_width=True,height = 200)
st.write ("Jumlah Tweet: ",df.shape[0])
# download datasets
st.write("<h3>π Analisis Sentimen</h3>",unsafe_allow_html=True)
col_fig1, col_fig2 = st.columns([4,3])
with col_fig1:
with st.spinner('Sedang Membuat Grafik...'):
st.write("<b>Jumlah Tweet Tiap Sentiment</b>",unsafe_allow_html=True)
fig_1 = fn.get_bar_chart(df)
st.plotly_chart(fig_1,use_container_width=True,theme="streamlit")
with col_fig2:
st.write("<b>Wordcloud Tiap Sentiment</b>",unsafe_allow_html=True)
tab1,tab2,tab3 = st.tabs(["π negatif","π netral","π positif"])
with tab1:
wordcloud_pos = tp.get_wordcloud(df,"negatif")
fig = plt.figure(figsize=(10, 5))
plt.imshow(wordcloud_pos, interpolation="bilinear")
plt.axis("off")
st.pyplot(fig)
with tab2:
wordcloud_neg = tp.get_wordcloud(df,"netral")
fig = plt.figure(figsize=(10, 5))
plt.imshow(wordcloud_neg, interpolation="bilinear")
plt.axis("off")
st.pyplot(fig)
with tab3:
wordcloud_net = tp.get_wordcloud(df,"positif")
fig = plt.figure(figsize=(10, 5))
plt.imshow(wordcloud_net, interpolation="bilinear")
plt.axis("off")
st.pyplot(fig)
st.write("<h3>β¨ Sentiment Clustering</h3>",unsafe_allow_html=True)
@st.experimental_singleton
def load_sentence_model():
embedding_model = SentenceTransformer('sentence_bert')
return embedding_model
embedding_model = load_sentence_model()
tab4,tab5,tab6 = st.tabs(["π negatif","π netral","π positif"])
with tab4:
if len(df[df["sentiment"]=="negatif"]) < 11:
st.write("Tweet Terlalu Sedikit, Tidak dapat melakukan clustering")
st.write(df[df["sentiment"]=="negatif"])
else:
with st.spinner('Sedang Membuat Grafik...(1/2)'):
text,data,fig = tp.plot_text(df,"negatif",embedding_model)
st.plotly_chart(fig,use_container_width=True,theme=None)
with st.spinner('Sedang Mengekstrak Topik... (2/2)'):
fig,topic_modelling = tp.topic_modelling(text,data)
st.plotly_chart(fig,use_container_width=True,theme="streamlit")
with tab5:
if len(df[df["sentiment"]=="netral"]) < 11:
st.write("Tweet Terlalu Sedikit, Tidak dapat melakukan clustering")
st.write(df[df["sentiment"]=="netral"])
else:
with st.spinner('Sedang Membuat Grafik... (1/2)'):
text,data,fig = tp.plot_text(df,"netral",embedding_model)
st.plotly_chart(fig,use_container_width=True,theme=None)
with st.spinner('Sedang Mengekstrak Topik... (2/2)'):
fig,topic_modelling = tp.topic_modelling(text,data)
st.plotly_chart(fig,use_container_width=True,theme="streamlit")
with tab6:
if len(df[df["sentiment"]=="positif"]) < 11:
st.write("Tweet Terlalu Sedikit, Tidak dapat melakukan clustering")
st.write(df[df["sentiment"]=="positif"])
else:
with st.spinner('Sedang Membuat Grafik...(1/2)'):
text,data,fig = tp.plot_text(df,"positif",embedding_model)
st.plotly_chart(fig,use_container_width=True,theme=None)
with st.spinner('Sedang Mengekstrak Topik... (2/2)'):
fig,topic_modelling = tp.topic_modelling(text,data)
st.plotly_chart(fig,use_container_width=True,theme="streamlit")
|