|
import streamlit as st |
|
|
|
import streamlit as st |
|
import pandas as pd |
|
import script.functions as fn |
|
import plotly.express as px |
|
import matplotlib.pyplot as plt |
|
|
|
import script.text_proc as tp |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
st.set_page_config( |
|
page_title="twitter sentiment analysis", |
|
page_icon="π", |
|
) |
|
|
|
st.sidebar.markdown("π Twitter Sentiment Analysis App") |
|
|
|
|
|
|
|
st.markdown("<h1 style='text-align: center;'>π Twitter Sentiment Analysis App</h1>", unsafe_allow_html=True) |
|
st.write("Aplikasi sederhana untuk melakukan analisis sentimen terhadap tweet yang diinputkan dan mengekstrak topik dari setiap sentimen.") |
|
|
|
|
|
sb1,sb2 = st.columns([2,4]) |
|
with sb1: |
|
option = st.selectbox('Pilih Mode Pencarian',('Simple','Advanced')) |
|
with sb2: |
|
option_model = st.selectbox('Pilih Model',("IndoBERT (Accurate,Slow)",'Naive Bayes','Logistic Regression (Less Accurate,Fast)','XGBoost','Catboost','SVM','Random Forest')) |
|
|
|
if option == 'Simple': |
|
|
|
col1, col2 = st.columns([3,2]) |
|
with col1: |
|
input = st.text_input("Masukkan User/Hastag", "@traveloka") |
|
with col2: |
|
length = st.number_input("Jumlah Tweet", 10, 500, 100) |
|
else : |
|
col1, col2 = st.columns([3,1]) |
|
with col1: |
|
input = st.text_input("Masukkan Parameter Pencarian", "(to:@traveloka AND @traveloka) -filter:links filter:replies lang:id") |
|
with col2: |
|
length = st.number_input("Jumlah Tweet", 10, 500, 100) |
|
st.caption("anda bisa menggunakan parameter pencarian yang lebih spesifik, parameter ini sama dengan paremeter pencarian di twitter") |
|
|
|
submit = st.button("πCari Tweet") |
|
|
|
st.caption("semakin banyak tweet yang diambil maka semakin lama proses analisis sentimen") |
|
|
|
if submit: |
|
with st.spinner('Mengambil data dari twitter... (1/2)'): |
|
df = fn.get_tweets(input, length, option) |
|
with st.spinner('Melakukan Prediksi Sentimen... (2/2)'): |
|
df = fn.get_sentiment(df,option_model) |
|
df.to_csv('assets/data.csv',index=False) |
|
|
|
st.write("<b>Preview Dataset</b>",unsafe_allow_html=True) |
|
def color_sentiment(val): |
|
color_dict = {"positif": "#00cc96", "negatif": "#ef553b","netral": "#636efa"} |
|
return f'color: {color_dict[val]}' |
|
st.dataframe(df.style.applymap(color_sentiment, subset=['sentiment']),use_container_width=True,height = 200) |
|
|
|
st.write ("Jumlah Tweet: ",df.shape[0]) |
|
|
|
|
|
|
|
st.write("<h3>π Analisis Sentimen</h3>",unsafe_allow_html=True) |
|
col_fig1, col_fig2 = st.columns([4,3]) |
|
with col_fig1: |
|
with st.spinner('Sedang Membuat Grafik...'): |
|
st.write("<b>Jumlah Tweet Tiap Sentiment</b>",unsafe_allow_html=True) |
|
fig_1 = fn.get_bar_chart(df) |
|
st.plotly_chart(fig_1,use_container_width=True,theme="streamlit") |
|
with col_fig2: |
|
st.write("<b>Wordcloud Tiap Sentiment</b>",unsafe_allow_html=True) |
|
tab1,tab2,tab3 = st.tabs(["π negatif","π netral","π positif"]) |
|
with tab1: |
|
wordcloud_pos = tp.get_wordcloud(df,"negatif") |
|
fig = plt.figure(figsize=(10, 5)) |
|
plt.imshow(wordcloud_pos, interpolation="bilinear") |
|
plt.axis("off") |
|
st.pyplot(fig) |
|
with tab2: |
|
wordcloud_neg = tp.get_wordcloud(df,"netral") |
|
fig = plt.figure(figsize=(10, 5)) |
|
plt.imshow(wordcloud_neg, interpolation="bilinear") |
|
plt.axis("off") |
|
st.pyplot(fig) |
|
with tab3: |
|
wordcloud_net = tp.get_wordcloud(df,"positif") |
|
fig = plt.figure(figsize=(10, 5)) |
|
plt.imshow(wordcloud_net, interpolation="bilinear") |
|
plt.axis("off") |
|
st.pyplot(fig) |
|
st.write("<h3>β¨ Sentiment Clustering</h3>",unsafe_allow_html=True) |
|
@st.experimental_singleton |
|
def load_sentence_model(): |
|
embedding_model = SentenceTransformer('sentence_bert') |
|
return embedding_model |
|
embedding_model = load_sentence_model() |
|
tab4,tab5,tab6 = st.tabs(["π negatif","π netral","π positif"]) |
|
with tab4: |
|
if len(df[df["sentiment"]=="negatif"]) < 11: |
|
st.write("Tweet Terlalu Sedikit, Tidak dapat melakukan clustering") |
|
st.write(df[df["sentiment"]=="negatif"]) |
|
else: |
|
with st.spinner('Sedang Membuat Grafik...(1/2)'): |
|
text,data,fig = tp.plot_text(df,"negatif",embedding_model) |
|
st.plotly_chart(fig,use_container_width=True,theme=None) |
|
with st.spinner('Sedang Mengekstrak Topik... (2/2)'): |
|
fig,topic_modelling = tp.topic_modelling(text,data) |
|
st.plotly_chart(fig,use_container_width=True,theme="streamlit") |
|
with tab5: |
|
if len(df[df["sentiment"]=="netral"]) < 11: |
|
st.write("Tweet Terlalu Sedikit, Tidak dapat melakukan clustering") |
|
st.write(df[df["sentiment"]=="netral"]) |
|
else: |
|
with st.spinner('Sedang Membuat Grafik... (1/2)'): |
|
text,data,fig = tp.plot_text(df,"netral",embedding_model) |
|
st.plotly_chart(fig,use_container_width=True,theme=None) |
|
with st.spinner('Sedang Mengekstrak Topik... (2/2)'): |
|
fig,topic_modelling = tp.topic_modelling(text,data) |
|
st.plotly_chart(fig,use_container_width=True,theme="streamlit") |
|
with tab6: |
|
if len(df[df["sentiment"]=="positif"]) < 11: |
|
st.write("Tweet Terlalu Sedikit, Tidak dapat melakukan clustering") |
|
st.write(df[df["sentiment"]=="positif"]) |
|
else: |
|
with st.spinner('Sedang Membuat Grafik...(1/2)'): |
|
text,data,fig = tp.plot_text(df,"positif",embedding_model) |
|
st.plotly_chart(fig,use_container_width=True,theme=None) |
|
with st.spinner('Sedang Mengekstrak Topik... (2/2)'): |
|
fig,topic_modelling = tp.topic_modelling(text,data) |
|
st.plotly_chart(fig,use_container_width=True,theme="streamlit") |
|
|
|
|
|
|
|
|
|
|