update app.py
Browse files
app.py
CHANGED
@@ -63,6 +63,18 @@ def load_sample3():
|
|
63 |
def load_sample4():
|
64 |
return load_sample(4)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
import torchvision
|
67 |
|
68 |
def load_sample(index):
|
@@ -90,7 +102,6 @@ def load_sample(index):
|
|
90 |
|
91 |
|
92 |
def predict(sample_index):
|
93 |
-
print(sample_index)
|
94 |
sample = torch.load(f"samples/val{sample_index-1}.pt")
|
95 |
model.eval()
|
96 |
with torch.no_grad():
|
@@ -111,11 +122,12 @@ def predict(sample_index):
|
|
111 |
|
112 |
return [pil_images_output[0], pil_images_output[1], pil_images_output[2]]
|
113 |
|
114 |
-
with gr.Blocks(
|
|
|
115 |
) as demo:
|
116 |
sample_index = gr.State([])
|
117 |
|
118 |
-
gr.HTML(
|
119 |
|
120 |
with gr.Row():
|
121 |
input_image0 = gr.Image(label="image channel 0", type="pil", shape=(240, 240))
|
@@ -135,6 +147,10 @@ with gr.Blocks(css=".gradio-container {background:lightyellow;color:red;}", titl
|
|
135 |
example2_btn = gr.Button("Example 2")
|
136 |
example3_btn = gr.Button("Example 3")
|
137 |
example4_btn = gr.Button("Example 4")
|
|
|
|
|
|
|
|
|
138 |
|
139 |
example1_btn.click(fn=load_sample1, inputs=None,
|
140 |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
@@ -148,6 +164,18 @@ with gr.Blocks(css=".gradio-container {background:lightyellow;color:red;}", titl
|
|
148 |
example4_btn.click(fn=load_sample4, inputs=None,
|
149 |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
150 |
label_image0, label_image1, label_image2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
with gr.Row():
|
153 |
output_image0 = gr.Image(label="output channel 0", type="pil")
|
|
|
63 |
def load_sample4():
|
64 |
return load_sample(4)
|
65 |
|
66 |
+
def load_sample5():
|
67 |
+
return load_sample(5)
|
68 |
+
|
69 |
+
def load_sample6():
|
70 |
+
return load_sample(6)
|
71 |
+
|
72 |
+
def load_sample7():
|
73 |
+
return load_sample(7)
|
74 |
+
|
75 |
+
def load_sample8():
|
76 |
+
return load_sample(8)
|
77 |
+
|
78 |
import torchvision
|
79 |
|
80 |
def load_sample(index):
|
|
|
102 |
|
103 |
|
104 |
def predict(sample_index):
|
|
|
105 |
sample = torch.load(f"samples/val{sample_index-1}.pt")
|
106 |
model.eval()
|
107 |
with torch.no_grad():
|
|
|
122 |
|
123 |
return [pil_images_output[0], pil_images_output[1], pil_images_output[2]]
|
124 |
|
125 |
+
with gr.Blocks( title="Brain tumor 3D segmentation with MONAIMNIST - ClassCat"
|
126 |
+
css=".gradio-container {background:azure;}",
|
127 |
) as demo:
|
128 |
sample_index = gr.State([])
|
129 |
|
130 |
+
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">Brain tumor 3D segmentation with MONAI</div>""")
|
131 |
|
132 |
with gr.Row():
|
133 |
input_image0 = gr.Image(label="image channel 0", type="pil", shape=(240, 240))
|
|
|
147 |
example2_btn = gr.Button("Example 2")
|
148 |
example3_btn = gr.Button("Example 3")
|
149 |
example4_btn = gr.Button("Example 4")
|
150 |
+
example5_btn = gr.Button("Example 5")
|
151 |
+
example6_btn = gr.Button("Example 6")
|
152 |
+
example7_btn = gr.Button("Example 7")
|
153 |
+
example8_btn = gr.Button("Example 8")
|
154 |
|
155 |
example1_btn.click(fn=load_sample1, inputs=None,
|
156 |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
|
|
164 |
example4_btn.click(fn=load_sample4, inputs=None,
|
165 |
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
166 |
label_image0, label_image1, label_image2])
|
167 |
+
example5_btn.click(fn=load_sample5, inputs=None,
|
168 |
+
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
169 |
+
label_image0, label_image1, label_image2])
|
170 |
+
example6_btn.click(fn=load_sample6, inputs=None,
|
171 |
+
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
172 |
+
label_image0, label_image1, label_image2])
|
173 |
+
example7_btn.click(fn=load_sample7, inputs=None,
|
174 |
+
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
175 |
+
label_image0, label_image1, label_image2])
|
176 |
+
example8_btn.click(fn=load_sample8, inputs=None,
|
177 |
+
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
|
178 |
+
label_image0, label_image1, label_image2])
|
179 |
|
180 |
with gr.Row():
|
181 |
output_image0 = gr.Image(label="output channel 0", type="pil")
|