Spaces:
Sleeping
Sleeping
File size: 1,504 Bytes
b5cccbd 457890e b5cccbd 457890e b5cccbd 457890e b5cccbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import os
import streamlit as st
import time
from huggingface_hub import Repository
from huggingface_hub import login
login(token = os.environ['HF_TOKEN'])
repo = Repository(
local_dir="agent_function",
repo_type="dataset",
clone_from=os.environ['DATASET'],
token=True
)
repo.git_pull()
from agent_function.agent import Agent
# Streamed response emulator
def response_generator(query):
ans = Agent().ask(query)
for word in ans.split(' '):
yield word + " "
time.sleep(0.05)
st.title("HR Chatbot")
if 'conversation_id' not in st.session_state:
st.session_state['conversation_id'] = ''
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
response = st.write_stream(response_generator(prompt))
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response}) |