File size: 1,504 Bytes
b5cccbd
 
 
 
 
 
 
 
 
457890e
b5cccbd
 
 
 
 
 
457890e
b5cccbd
 
 
 
457890e
b5cccbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import streamlit as st
import time
from huggingface_hub import Repository
from huggingface_hub import login

login(token = os.environ['HF_TOKEN'])

repo = Repository(
    local_dir="agent_function",
    repo_type="dataset",
    clone_from=os.environ['DATASET'],
    token=True
)
repo.git_pull()

from agent_function.agent import Agent


# Streamed response emulator
def response_generator(query):
    ans = Agent().ask(query)
    
    for word in ans.split(' '):
            yield word + " "
            time.sleep(0.05)

st.title("HR Chatbot")

if 'conversation_id' not in st.session_state:
    st.session_state['conversation_id'] = ''

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input("What is up?"):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        response = st.write_stream(response_generator(prompt))

    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})