kualitas_daging / app.py
Asadel Ann
Update app.py
ad20374
raw
history blame
801 Bytes
import numpy as np
import gradio as gr
from tensorflow.keras.models import load_model
import imutils
import matplotlib.pyplot as plt
import cv2
import numpy as np
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import pickle
model = load_model('daging128.model')
mlb = pickle.loads(open('daging128.pickle', "rb").read())
labels = ['Busuk', 'Segar', 'Setengah']
def gambaran(image):
image = cv2.resize(image, (128, 128))
image = image.astype("float") / 255.0
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
proba = model.predict(image)[0]
idxs = np.argsort(proba)[::-1][:2]
return labels[idxs[0]]
demo = gr.Interface(gambaran, gr.Image(shape=(128, 128)), "text")
demo.launch()