Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
import imutils
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
PROB_THRESHOLD = 0.4 # Minimum probably to show results.
|
13 |
+
class Model:
|
14 |
+
def __init__(self, model_filepath):
|
15 |
+
self.graph_def = tensorflow.compat.v1.GraphDef()
|
16 |
+
self.graph_def.ParseFromString(model_filepath.read_bytes())
|
17 |
+
|
18 |
+
input_names, self.output_names = self._get_graph_inout(self.graph_def)
|
19 |
+
assert len(input_names) == 1 and len(self.output_names) == 3
|
20 |
+
self.input_name = input_names[0]
|
21 |
+
self.input_shape = self._get_input_shape(self.graph_def, self.input_name)
|
22 |
+
|
23 |
+
def predict(self, image_filepath):
|
24 |
+
image = Image.fromarray(image_filepath).resize(self.input_shape)
|
25 |
+
input_array = np.array(image, dtype=np.float32)[np.newaxis, :, :, :]
|
26 |
+
|
27 |
+
with tensorflow.compat.v1.Session() as sess:
|
28 |
+
tensorflow.import_graph_def(self.graph_def, name='')
|
29 |
+
out_tensors = [sess.graph.get_tensor_by_name(o + ':0') for o in self.output_names]
|
30 |
+
outputs = sess.run(out_tensors, {self.input_name + ':0': input_array})
|
31 |
+
return {name: outputs[i][np.newaxis, ...] for i, name in enumerate(self.output_names)}
|
32 |
+
|
33 |
+
@staticmethod
|
34 |
+
def _get_graph_inout(graph_def):
|
35 |
+
input_names = []
|
36 |
+
inputs_set = set()
|
37 |
+
outputs_set = set()
|
38 |
+
|
39 |
+
for node in graph_def.node:
|
40 |
+
if node.op == 'Placeholder':
|
41 |
+
input_names.append(node.name)
|
42 |
+
|
43 |
+
for i in node.input:
|
44 |
+
inputs_set.add(i.split(':')[0])
|
45 |
+
outputs_set.add(node.name)
|
46 |
+
|
47 |
+
output_names = list(outputs_set - inputs_set)
|
48 |
+
return input_names, output_names
|
49 |
+
|
50 |
+
@staticmethod
|
51 |
+
def _get_input_shape(graph_def, input_name):
|
52 |
+
for node in graph_def.node:
|
53 |
+
if node.name == input_name:
|
54 |
+
return [dim.size for dim in node.attr['shape'].shape.dim][1:3]
|
55 |
+
|
56 |
+
def print_outputs(outputs, gambar):
|
57 |
+
image = gambar
|
58 |
+
assert set(outputs.keys()) == set(['detected_boxes', 'detected_classes', 'detected_scores'])
|
59 |
+
l, t, d = image.shape
|
60 |
+
labelopen = open("labels.txt", 'r')
|
61 |
+
labels = [line.split(',') for line in labelopen.readlines()]
|
62 |
+
for box, class_id, score in zip(outputs['detected_boxes'][0], outputs['detected_classes'][0], outputs['detected_scores'][0]):
|
63 |
+
if score > PROB_THRESHOLD:
|
64 |
+
print(f"Label: {class_id}, Probability: {score:.5f}, box: ({box[0]:.5f}, {box[1]:.5f}) ({box[2]:.5f}, {box[3]:.5f})")
|
65 |
+
x = box[0] * t
|
66 |
+
y = box[1] * l
|
67 |
+
h = box[2] * t
|
68 |
+
w = box[3] * l
|
69 |
+
result_image = cv2.rectangle(image, (int(x), int(y)), (int(h), int(w)), (255,215,0), 3)
|
70 |
+
cv2.putText(result_image, labels[int(class_id)][0], (int(x), int(y)-10), fontFace = cv2.FONT_HERSHEY_SIMPLEX, fontScale = 0.5, color = (255,215,0), thickness = 2)
|
71 |
+
return result_image
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
def main(gambar):
|
77 |
+
p = pathlib.Path("model.pb")
|
78 |
+
#b = pathlib.Path(gambar)
|
79 |
+
model = Model(p)
|
80 |
+
outputs = model.predict(gambar)
|
81 |
+
|
82 |
+
return print_outputs(outputs, gambar)
|
83 |
+
|
84 |
+
demo = gr.Interface(main, gr.Image(shape=(500, 500)), "image")
|
85 |
+
demo.launch()
|