import numpy as np import gradio as gr from tensorflow.keras.models import load_model import imutils import matplotlib.pyplot as plt import cv2 import numpy as np from tensorflow.keras.preprocessing.image import img_to_array from PIL import Image import pathlib import tensorflow PROB_THRESHOLD = 0.4 # Minimum probably to show results. class Model: def __init__(self, model_filepath): self.graph_def = tensorflow.compat.v1.GraphDef() self.graph_def.ParseFromString(model_filepath.read_bytes()) input_names, self.output_names = self._get_graph_inout(self.graph_def) assert len(input_names) == 1 and len(self.output_names) == 3 self.input_name = input_names[0] self.input_shape = self._get_input_shape(self.graph_def, self.input_name) def predict(self, image_filepath): image = Image.fromarray(image_filepath).resize(self.input_shape) input_array = np.array(image, dtype=np.float32)[np.newaxis, :, :, :] with tensorflow.compat.v1.Session() as sess: tensorflow.import_graph_def(self.graph_def, name='') out_tensors = [sess.graph.get_tensor_by_name(o + ':0') for o in self.output_names] outputs = sess.run(out_tensors, {self.input_name + ':0': input_array}) return {name: outputs[i][np.newaxis, ...] for i, name in enumerate(self.output_names)} @staticmethod def _get_graph_inout(graph_def): input_names = [] inputs_set = set() outputs_set = set() for node in graph_def.node: if node.op == 'Placeholder': input_names.append(node.name) for i in node.input: inputs_set.add(i.split(':')[0]) outputs_set.add(node.name) output_names = list(outputs_set - inputs_set) return input_names, output_names @staticmethod def _get_input_shape(graph_def, input_name): for node in graph_def.node: if node.name == input_name: return [dim.size for dim in node.attr['shape'].shape.dim][1:3] def print_outputs(outputs, gambar): image = gambar assert set(outputs.keys()) == set(['detected_boxes', 'detected_classes', 'detected_scores']) l, t, d = image.shape labelopen = open("labels.txt", 'r') labels = [line.split(',') for line in labelopen.readlines()] for box, class_id, score in zip(outputs['detected_boxes'][0], outputs['detected_classes'][0], outputs['detected_scores'][0]): if score > PROB_THRESHOLD: print(f"Label: {class_id}, Probability: {score:.5f}, box: ({box[0]:.5f}, {box[1]:.5f}) ({box[2]:.5f}, {box[3]:.5f})") x = box[0] * t y = box[1] * l h = box[2] * t w = box[3] * l result_image = cv2.rectangle(image, (int(x), int(y)), (int(h), int(w)), (255,215,0), 3) cv2.putText(result_image, labels[int(class_id)][0], (int(x), int(y)-10), fontFace = cv2.FONT_HERSHEY_SIMPLEX, fontScale = 0.5, color = (255,215,0), thickness = 2) return result_image def main(gambar): p = pathlib.Path("model.pb") #b = pathlib.Path(gambar) model = Model(p) outputs = model.predict(gambar) return print_outputs(outputs, gambar) demo = gr.Interface(main, gr.Image(shape=(500, 500)), "image") demo.launch()