Demo / app.py
dalexanderch's picture
Update app.py
b1602af
raw
history blame
7.41 kB
import gradio as gr
import tensorflow as tf
from keras.datasets import mnist
from keras.utils import np_utils
from tensorflow import keras
import numpy as np
from tensorflow.keras import datasets
import os
import matplotlib.pyplot as plt
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Adversarial attacks mnist
def create_pattern_mnist(image, label, model):
# Define loss function
loss_function = tf.keras.losses.CategoricalCrossentropy()
# Reshape image
image = image.reshape((1,image.shape[0]))
image = tf.cast(image, tf.float32)
# Reshape label
label = label.reshape(((1,label.shape[0])))
with tf.GradientTape() as tape:
tape.watch(image)
prediction = model(image)
loss = loss_function(label, prediction)
# Get the gradients of the loss w.r.t to the input image.
gradient = tape.gradient(loss, image)
# Get the sign of the gradients to create the perturbation
signed_grad = tf.sign(gradient)
return signed_grad.numpy()
def fgsm_mnist(image, label, model, epsilon):
pattern = create_pattern_mnist(image, label, model)
adv_x = image + epsilon*pattern
adv_x = tf.clip_by_value(adv_x, 0, 1)
# adv_x = adv_x * 0.5 + 0.5
return adv_x.numpy()
def iterative_fgsm_mnist(image, label, model, epsilon, alpha, niter):
adv_x = image
for _ in range(niter):
pattern = create_pattern_mnist(adv_x, label, model)
adv_x = adv_x + alpha * pattern
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
adv_x = adv_x.numpy()
adv_x = adv_x.reshape(adv_x.shape[1])
adv_x = tf.clip_by_value(adv_x, 0, 1)
# adv_x = adv_x * 0.5 + 0.5
return adv_x.numpy()
def iterative_least_likely_fgsm_mnist(image, model, epsilon, alpha, niter, nb_classes):
adv_x = image
image = image.reshape((1,image.shape[0]))
label = np_utils.to_categorical(np.argmin(model(image)), nb_classes)
image = image.reshape(image.shape[1])
for _ in range(niter):
pattern = create_pattern_mnist(adv_x, label, model)
adv_x = adv_x - alpha * pattern
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
adv_x = adv_x.numpy()
adv_x = adv_x.reshape(adv_x.shape[1])
adv_x = tf.clip_by_value(adv_x, 0, 1)
# adv_x = adv_x * 0.5 + 0.5
return adv_x.numpy()
# Attack functions cifar10
def create_pattern_cifar10(image, label, model):
# Define loss function
loss_function = tf.keras.losses.CategoricalCrossentropy()
# Reshape image
image = image.reshape((1,32,32,3))
image = tf.cast(image, tf.float32)
# Reshape label
label = label.reshape(((1,10)))
with tf.GradientTape() as tape:
tape.watch(image)
prediction = model(image)
loss = loss_function(label, prediction)
# Get the gradients of the loss w.r.t to the input image.
gradient = tape.gradient(loss, image)
# Get the sign of the gradients to create the perturbation
signed_grad = tf.sign(gradient)
return signed_grad.numpy()
def fgsm_cifar10(image, label, model, epsilon):
pattern = create_pattern_cifar10(image, label, model)
adv_x = image + epsilon*pattern
adv_x = tf.clip_by_value(adv_x, 0, 1)
# adv_x = adv_x * 0.5 + 0.5
return adv_x.numpy()
def iterative_fgsm_cifar10(image, label, model, epsilon, alpha, niter):
adv_x = image
for _ in range(niter):
pattern = create_pattern_cifar10(adv_x, label, model)
adv_x = adv_x + alpha * pattern
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
adv_x = adv_x.numpy()
adv_x = adv_x.reshape((32,32,3))
adv_x = tf.clip_by_value(adv_x, 0, 1)
# adv_x = adv_x * 0.5 + 0.5
return adv_x.numpy()
def iterative_least_likely_fgsm_cifar10(image, model, epsilon, alpha, niter, nb_classes):
adv_x = image
image = image.reshape((1,32,32,3))
label = np_utils.to_categorical(np.argmin(model(image)), nb_classes)
image = image.reshape((32,32,3))
for _ in range(niter):
pattern = create_pattern_cifar10(adv_x, label, model)
adv_x = adv_x - alpha * pattern
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
adv_x = adv_x.numpy()
adv_x = adv_x.reshape((32,32,3))
adv_x = tf.clip_by_value(adv_x, 0, 1)
# adv_x = adv_x * 0.5 + 0.5
return adv_x.numpy()
def fn(dataset, attack):
epsilon=15/255
alpha=1/255
niter = int(min(4 + epsilon*255, 1.25 * epsilon * 255))
nb_classes = 10
classes = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
if dataset == "MNIST":
idx = np.random.randint(0, len(X_test_mnist))
image1 = X_test_mnist[idx]
label1 = Y_test_mnist[idx]
pred1 = np.argmax(label1)
if attack == "FGSM":
image2 = fgsm_mnist(image1, label1, model_mnist, epsilon)
elif attack == "I_FGSM":
image2 = iterative_fgsm_mnist(image1, label1, model_mnist, epsilon, alpha, niter)
else:
image2 = iterative_least_likely_fgsm_mnist(image1, model_mnist, epsilon, alpha, niter, nb_classes)
pred2 = np.argmax(model_mnist(image2.reshape((1,784))))
image1 = image1.reshape((28,28))
image2 = image2.reshape((28,28))
else:
idx = np.random.randint(0, len(X_test_cifar10))
image1 = X_test_cifar10[idx]
label1 = Y_test_cifar10[idx]
pred1 = classes[np.argmax(label1)]
if attack == "FGSM":
image2 = fgsm_cifar10(image1, label1, model_cifar10, epsilon)
elif attack == "I_FGSM":
image2 = iterative_fgsm_cifar10(image1, label1, model_cifar10, epsilon, alpha, niter)
else:
image2 = iterative_least_likely_fgsm_cifar10(image1, model_cifar10, epsilon, alpha, niter, nb_classes)
pred2 = classes[np.argmax(model_cifar10(image2.reshape((1,32,32,3))))]
image1 = image1.reshape((32,32,3))
image2 = image2.reshape((32,32,3))
return image1, pred1, image2, pred2
model_mnist = keras.models.load_model('mnist.h5')
model_cifar10 = keras.models.load_model('cifar10.h5')
# Load MNIST data
(_, _), (X_test_mnist, Y_test_mnist) = mnist.load_data()
X_test_mnist = X_test_mnist.astype('float32')
X_test_mnist = X_test_mnist.reshape(10000, 784)
X_test_mnist /= 255
nb_classes = 10
Y_test_mnist = np_utils.to_categorical(Y_test_mnist, nb_classes)
# Load CIFAR10 data
(_, _), (X_test_cifar10, Y_test_cifar10) = datasets.cifar10.load_data()
X_test_cifar10 = X_test_cifar10 / 255.0
Y_test_cifar10 = np_utils.to_categorical(Y_test_cifar10, nb_classes)
demo = gr.Interface(
fn=fn,
allow_flagging="never",
title="Adversarial attack demonstration",
description="A random image from the chosen dataset will be perturbated with the chosen attack type and both the original image and the perturbated image will be displayed.",
inputs=[
gr.Radio(choices=["MNIST", "CIFAR10"], label="Pick a dataset"),
gr.Radio(choices=["FGSM", "I-FGSM", "I-LL-FGSM"], label="Pick an attack")
],
outputs=[
gr.Image(label="Original Image").style(height=256,width=256),
gr.Textbox(label="Predicted class"),
gr.Image(label="Perturbated image").style(height=256,width=256),
gr.Textbox(label="Predicted class")],
)
demo.launch()