Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import math | |
import torch | |
import random | |
from PIL import Image | |
from torch.utils.data import DataLoader | |
from torchvision.transforms import Resize | |
torch.manual_seed(12345) | |
random.seed(12345) | |
np.random.seed(12345) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
class WireframeExtractor: | |
def __call__(self, image: np.ndarray): | |
""" | |
Extract corners of wireframe from a barnacle image | |
:param image: Numpy RGB image of shape (W, H, 3) | |
:return [x1, y1, x2, y2] | |
""" | |
h, w = image.shape[:2] | |
imghsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) | |
hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0) | |
lower = np.array([70, 20, 20]) | |
upper = np.array([130, 255, 255]) | |
color_mask = cv2.inRange(hsvblur, lower, upper) | |
invert = cv2.bitwise_not(color_mask) | |
contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
max_contour = contours[0] | |
largest_area = 0 | |
for index, contour in enumerate(contours): | |
area = cv2.contourArea(contour) | |
if area > largest_area: | |
if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1: | |
largest_area = area | |
max_contour = contour | |
x, y, w, h = cv2.boundingRect(max_contour) | |
# return [x, y, x + w, y + h] | |
return x,y,w,h | |
wireframe_extractor = WireframeExtractor() | |
def show_anns(anns): | |
if len(anns) == 0: | |
return | |
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) | |
ax = plt.gca() | |
ax.set_autoscale_on(False) | |
polygons = [] | |
color = [] | |
for ann in sorted_anns: | |
m = ann['segmentation'] | |
img = np.ones((m.shape[0], m.shape[1], 3)) | |
color_mask = np.random.random((1, 3)).tolist()[0] | |
for i in range(3): | |
img[:,:,i] = color_mask[i] | |
ax.imshow(np.dstack((img, m*0.35))) | |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor | |
model = sam_model_registry["default"](checkpoint="./sam_vit_h_4b8939.pth") | |
model.to(device) | |
mask_generator = SamAutomaticMaskGenerator(model) | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import io | |
def check_circularity(segmentation): | |
img_u8 = segmentation.astype(np.uint8) | |
im_gauss = cv2.GaussianBlur(img_u8, (5, 5), 0) | |
ret, thresh = cv2.threshold(im_gauss, 0, 255, cv2.THRESH_BINARY) | |
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
con = contours[0] | |
perimeter = cv2.arcLength(con, True) | |
area = cv2.contourArea(con) | |
if perimeter != 0: | |
circularity = 4*math.pi*(area/(perimeter*perimeter)) | |
if 0.8 < circularity < 1.2: | |
return True | |
else: | |
return circularity | |
def count_barnacles(image_raw, progress=gr.Progress()): | |
progress(0, desc="Finding bounding wire") | |
corners = wireframe_extractor(image_raw) | |
print(corners) # (0, 0, 1254, 1152) | |
if corners[2] < 4 or corners[3] < 4: | |
return None, 0, [] | |
cropped_image = image_raw[corners[1]:corners[3]+corners[1], corners[0]:corners[2]+corners[0], :] | |
print(cropped_image.shape) | |
split_num = 2 | |
x_inc = int(cropped_image.shape[0]/split_num) | |
y_inc = int(cropped_image.shape[1]/split_num) | |
startx = -x_inc | |
mask_counter = 0 | |
good_masks = [] | |
centers = [] | |
for r in range(0, split_num): | |
startx += x_inc | |
starty = -y_inc | |
for c in range(0, split_num): | |
starty += y_inc | |
small_image = cropped_image[starty:starty+y_inc, startx:startx+x_inc, :] | |
# plt.figure() | |
# plt.imshow(small_image) | |
# plt.axis('on') | |
progress(0, desc=f"Generating masks for crop {r*split_num + c}/{split_num ** 2}") | |
masks = mask_generator.generate(small_image) | |
num_masks = len(masks) | |
for idx, mask in enumerate(masks): | |
progress(float(idx)/float(num_masks), desc=f"Processing masks for crop {r*split_num + c}/{split_num ** 2}") | |
circular = check_circularity(mask['segmentation']) | |
if circular and mask['area']>500 and mask['area'] < 10000: | |
mask_counter += 1 | |
good_masks.append(mask) | |
box = mask['bbox'] | |
centers.append((box[0] + box[2]/2 + corners[0] + startx, box[1] + box[3]/2 + corners[1] + starty)) | |
progress(0, desc="Generating Plot") | |
# Create a figure with a size of 10 inches by 10 inches | |
fig = plt.figure(figsize=(10, 10)) | |
# Display the image using the imshow() function | |
# plt.imshow(cropped_image) | |
plt.imshow(image_raw) | |
# Call the custom function show_anns() to plot annotations on top of the image | |
# show_anns(good_masks) | |
for coord in centers: | |
plt.scatter(coord[0], coord[1], marker="x", color="red", s=32) | |
# Turn off the axis | |
plt.axis('off') | |
# Get the plot as a numpy array | |
# buf = io.BytesIO() | |
# plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0) | |
# buf.seek(0) | |
# img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8) | |
# buf.close() | |
# # Decode the numpy array to an image | |
# annotated = cv2.imdecode(img_arr, 1) | |
# annotated = cv2.cvtColor(annotated, cv2.COLOR_BGR2RGB) | |
# # Close the figure | |
# plt.close(fig) | |
# return annotated, mask_counter, centers | |
good_centers = [] | |
for point in centers: | |
is_good = True | |
for prev_point in good_centers: | |
if (point[0] - prev_point[0]) ** 2 + (point[1] + prev_point[1]) ** 2 < 200: | |
is_good = False | |
if is_good: | |
good_centers.append(point) | |
return fig, len(good_centers), good_centers | |
demo = gr.Interface(count_barnacles, | |
inputs=[ | |
gr.Image(type="numpy", label="Input Image"), | |
], | |
outputs=[ | |
# gr.Image(type="numpy", label="Annotated Image"), | |
gr.Plot(label="Annotated Image"), | |
gr.Number(label="Predicted Number of Barnacles"), | |
gr.Dataframe(type="array", headers=["x", "y"], label="Mask centers") | |
# gr.Number(label="Actual Number of Barnacles"), | |
# gr.Number(label="Custom Metric") | |
]) | |
# examples="examples") | |
demo.queue(concurrency_count=1).launch() |