Spaces:
Sleeping
Sleeping
File size: 2,185 Bytes
508862a 1cb464c 508862a 1cb464c 508862a 1cb464c 927fcf3 1cb464c 508862a 1cb464c 508862a 927fcf3 508862a 1cb464c 12b4668 804ae79 1cb464c 508862a 1cb464c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import gradio as gr
from huggingface_hub import InferenceClient
# Function to create InferenceClient dynamically based on model selection
def get_client(model_name):
return InferenceClient(model_name)
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
top_p,
model_name, # Added model_name to the function arguments
):
# Statically defined system message
system_message = "You are a friendly Chatbot."
# Create client for the selected model
client = get_client(model_name)
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Add the latest user message
messages.append({"role": "user", "content": message})
# Make the request
response = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=False
)
# Extract the full response for chat models
full_response = response.choices[0].message["content"]
return full_response
# Gradio ChatInterface setup with static system message and no Textbox for system message
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95, step=0.05, label="Top-p (nucleus sampling)"
),
# Dropdown to select model
gr.Dropdown(
choices=[
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
"HuggingFaceH4/zephyr-7b-beta",
"microsoft/Phi-3.5-mini-instruct"
],
value="meta-llama/Meta-Llama-3-8B-Instruct",
label="Choose Model"
),
],
)
if __name__ == "__main__":
demo.launch() |