Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Function to create InferenceClient dynamically based on model selection | |
def get_client(model_name): | |
return InferenceClient(model_name) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
max_tokens, | |
temperature, | |
top_p, | |
model_name, # Added model_name to the function arguments | |
): | |
# Statically defined system message | |
system_message = "You are a friendly Chatbot." | |
# Create client for the selected model | |
client = get_client(model_name) | |
# Check if the model is one of the problematic models | |
if model_name in ["indonlp/cendol-mt5-small-inst", "indonlp/cendol-mt5-small-chat"]: | |
# For these models, we simply concatenate the conversation into a single string | |
history_str = "" | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
history_str += f"{user_msg}\n" | |
if assistant_msg: | |
history_str += f"{assistant_msg}\n" | |
# Add the latest user message | |
history_str += f"{message}\n" | |
# Pass the entire conversation history as a plain text prompt | |
response = client.text_generation( | |
history_str, # Single string as input | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p | |
) | |
# Since response is a string, return it directly | |
full_response = response | |
else: | |
# For other models, we use a structured format with roles | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Add the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Make the request | |
response = client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=False | |
) | |
# Extract the full response for chat models | |
full_response = response.choices[0].message["content"] | |
return full_response | |
# Gradio ChatInterface setup with static system message and no Textbox for system message | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
), | |
# Dropdown to select model | |
gr.Dropdown( | |
choices=[ | |
"meta-llama/Meta-Llama-3-8B-Instruct", | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
"HuggingFaceH4/zephyr-7b-beta" | |
], | |
value="meta-llama/Meta-Llama-3-8B-Instruct", | |
label="Choose Model" | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |