Spaces:
Runtime error
Runtime error
Damian Stewart
commited on
Commit
·
94be4c7
1
Parent(s):
b58675c
add train seed
Browse files- StableDiffuser.py +8 -5
- app.py +27 -14
- memory_efficiency.py +1 -1
- train.py +18 -4
StableDiffuser.py
CHANGED
@@ -4,6 +4,7 @@ import torch
|
|
4 |
from baukit import TraceDict
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
from PIL import Image
|
|
|
7 |
from tqdm.auto import tqdm
|
8 |
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
|
9 |
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
@@ -142,6 +143,7 @@ class StableDiffuser(torch.nn.Module):
|
|
142 |
pred_x0=False,
|
143 |
trace_args=None,
|
144 |
show_progress=True,
|
|
|
145 |
**kwargs):
|
146 |
|
147 |
latents_steps = []
|
@@ -153,11 +155,12 @@ class StableDiffuser(torch.nn.Module):
|
|
153 |
if trace_args:
|
154 |
trace = TraceDict(self, **trace_args)
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
161 |
|
162 |
# compute the previous noisy sample x_t -> x_t-1
|
163 |
output = self.scheduler.step(noise_pred, self.scheduler.timesteps[iteration], latents)
|
|
|
4 |
from baukit import TraceDict
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
from PIL import Image
|
7 |
+
from torch.cuda.amp import autocast
|
8 |
from tqdm.auto import tqdm
|
9 |
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
|
10 |
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
|
|
143 |
pred_x0=False,
|
144 |
trace_args=None,
|
145 |
show_progress=True,
|
146 |
+
use_amp=False,
|
147 |
**kwargs):
|
148 |
|
149 |
latents_steps = []
|
|
|
155 |
if trace_args:
|
156 |
trace = TraceDict(self, **trace_args)
|
157 |
|
158 |
+
with autocast(enabled=use_amp):
|
159 |
+
noise_pred = self.predict_noise(
|
160 |
+
iteration,
|
161 |
+
latents,
|
162 |
+
text_embeddings,
|
163 |
+
**kwargs)
|
164 |
|
165 |
# compute the previous noisy sample x_t -> x_t-1
|
166 |
output = self.scheduler.step(noise_pred, self.scheduler.timesteps[iteration], latents)
|
app.py
CHANGED
@@ -191,12 +191,20 @@ class Demo:
|
|
191 |
label="Learning Rate",
|
192 |
info='Learning rate used to train'
|
193 |
)
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
with gr.
|
196 |
-
self.
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
200 |
|
201 |
with gr.Column(scale=1):
|
202 |
|
@@ -209,16 +217,13 @@ class Demo:
|
|
209 |
self.download = gr.Files()
|
210 |
|
211 |
with gr.Tab("Export") as export_column:
|
212 |
-
|
213 |
with gr.Row():
|
214 |
-
|
215 |
self.explain_train= gr.Markdown(interactive=False,
|
216 |
-
|
217 |
|
218 |
with gr.Row():
|
219 |
|
220 |
with gr.Column(scale=3):
|
221 |
-
|
222 |
self.base_repo_id_or_path_input_export = gr.Text(
|
223 |
label="Base model",
|
224 |
value="CompVis/stable-diffusion-v1-4",
|
@@ -272,7 +277,8 @@ class Demo:
|
|
272 |
self.train_use_adamw8bit_input,
|
273 |
self.train_use_xformers_input,
|
274 |
self.train_use_amp_input,
|
275 |
-
|
|
|
276 |
],
|
277 |
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
|
278 |
)
|
@@ -287,6 +293,7 @@ class Demo:
|
|
287 |
|
288 |
def train(self, repo_id_or_path, img_size, prompt, train_method, neg_guidance, iterations, lr,
|
289 |
use_adamw8bit=True, use_xformers=False, use_amp=False, use_gradient_checkpointing=False,
|
|
|
290 |
pbar = gr.Progress(track_tqdm=True)):
|
291 |
|
292 |
if self.training:
|
@@ -311,19 +318,25 @@ class Demo:
|
|
311 |
modules = ".*attn1$"
|
312 |
frozen = []
|
313 |
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
-
save_path = f"models/{randn}_{prompt.lower().replace(' ', '')}_{train_method}_ng{neg_guidance}_lr{lr}_iter{iterations}.pt"
|
317 |
try:
|
318 |
self.training = True
|
319 |
train(repo_id_or_path, img_size, prompt, modules, frozen, iterations, neg_guidance, lr, save_path,
|
320 |
-
use_adamw8bit, use_xformers, use_amp, use_gradient_checkpointing)
|
321 |
finally:
|
322 |
self.training = False
|
323 |
|
324 |
torch.cuda.empty_cache()
|
325 |
|
326 |
-
new_model_name = f'
|
327 |
model_map[new_model_name] = save_path
|
328 |
|
329 |
return [gr.update(interactive=True, value='Train'),
|
|
|
191 |
label="Learning Rate",
|
192 |
info='Learning rate used to train'
|
193 |
)
|
194 |
+
self.train_seed_input = gr.Number(
|
195 |
+
value=-1,
|
196 |
+
label="Seed",
|
197 |
+
info="Set to a fixed number for reproducible training results, or use -1 to pick randomly"
|
198 |
+
)
|
199 |
|
200 |
+
with gr.Column():
|
201 |
+
self.train_memory_options = gr.Markdown(interactive=False,
|
202 |
+
r value='Performance and VRAM usage optimizations, may not work on all devices.')
|
203 |
+
with gr.Row():
|
204 |
+
self.train_use_adamw8bit_input = gr.Checkbox(label="8bit AdamW", value=True)
|
205 |
+
self.train_use_xformers_input = gr.Checkbox(label="xformers", value=True)
|
206 |
+
self.train_use_amp_input = gr.Checkbox(label="AMP", value=True)
|
207 |
+
self.train_use_gradient_checkpointing_input = gr.Checkbox(label="Gradient checkpointing", value=True)
|
208 |
|
209 |
with gr.Column(scale=1):
|
210 |
|
|
|
217 |
self.download = gr.Files()
|
218 |
|
219 |
with gr.Tab("Export") as export_column:
|
|
|
220 |
with gr.Row():
|
|
|
221 |
self.explain_train= gr.Markdown(interactive=False,
|
222 |
+
value='Export a model to Diffusers format. Please enter the base model and select the editing weights.')
|
223 |
|
224 |
with gr.Row():
|
225 |
|
226 |
with gr.Column(scale=3):
|
|
|
227 |
self.base_repo_id_or_path_input_export = gr.Text(
|
228 |
label="Base model",
|
229 |
value="CompVis/stable-diffusion-v1-4",
|
|
|
277 |
self.train_use_adamw8bit_input,
|
278 |
self.train_use_xformers_input,
|
279 |
self.train_use_amp_input,
|
280 |
+
self.train_use_gradient_checkpointing_input,
|
281 |
+
self.train_seed_input,
|
282 |
],
|
283 |
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
|
284 |
)
|
|
|
293 |
|
294 |
def train(self, repo_id_or_path, img_size, prompt, train_method, neg_guidance, iterations, lr,
|
295 |
use_adamw8bit=True, use_xformers=False, use_amp=False, use_gradient_checkpointing=False,
|
296 |
+
seed = -1,
|
297 |
pbar = gr.Progress(track_tqdm=True)):
|
298 |
|
299 |
if self.training:
|
|
|
318 |
modules = ".*attn1$"
|
319 |
frozen = []
|
320 |
|
321 |
+
# build a save path, ensure it isn't in use
|
322 |
+
while True:
|
323 |
+
randn = torch.randint(1, 10000000, (1,)).item()
|
324 |
+
options = f'{"a8" if use_adamw8bit else ""}{"AM" if use_amp else ""}{"xf" if use_xformers else ""}{"gc" if use_gradient_checkpointing else ""}'
|
325 |
+
save_path = f"models/{prompt.lower().replace(' ', '')}_{train_method}_ng{neg_guidance}_lr{lr}_iter{iterations}_seed{seed}_{options}__{randn}.pt"
|
326 |
+
if not os.path.exists(save_path):
|
327 |
+
break
|
328 |
+
# repeat until a not-in-use path is found
|
329 |
|
|
|
330 |
try:
|
331 |
self.training = True
|
332 |
train(repo_id_or_path, img_size, prompt, modules, frozen, iterations, neg_guidance, lr, save_path,
|
333 |
+
use_adamw8bit, use_xformers, use_amp, use_gradient_checkpointing, seed=seed)
|
334 |
finally:
|
335 |
self.training = False
|
336 |
|
337 |
torch.cuda.empty_cache()
|
338 |
|
339 |
+
new_model_name = f'{os.path.basename(save_path)}'
|
340 |
model_map[new_model_name] = save_path
|
341 |
|
342 |
return [gr.update(interactive=True, value='Train'),
|
memory_efficiency.py
CHANGED
@@ -37,7 +37,7 @@ class MemoryEfficiencyWrapper:
|
|
37 |
print("failed to load xformers, using attention slicing instead")
|
38 |
self.diffuser.unet.set_attention_slice("auto")
|
39 |
pass
|
40 |
-
elif (not self.
|
41 |
print("AMP is disabled but model is SD1.X, using attention slicing instead of xformers")
|
42 |
self.diffuser.unet.set_attention_slice("auto")
|
43 |
else:
|
|
|
37 |
print("failed to load xformers, using attention slicing instead")
|
38 |
self.diffuser.unet.set_attention_slice("auto")
|
39 |
pass
|
40 |
+
elif (not self.use_amp and self.is_sd1attn):
|
41 |
print("AMP is disabled but model is SD1.X, using attention slicing instead of xformers")
|
42 |
self.diffuser.unet.set_attention_slice("auto")
|
43 |
else:
|
train.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
from torch.cuda.amp import autocast
|
2 |
|
3 |
from StableDiffuser import StableDiffuser
|
@@ -9,7 +12,7 @@ from memory_efficiency import MemoryEfficiencyWrapper
|
|
9 |
|
10 |
|
11 |
def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations, negative_guidance, lr, save_path,
|
12 |
-
use_adamw8bit=True, use_xformers=True, use_amp=True, use_gradient_checkpointing=False):
|
13 |
|
14 |
nsteps = 50
|
15 |
diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=repo_id_or_path).to('cuda')
|
@@ -47,6 +50,10 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
47 |
|
48 |
print(f"using img_size of {img_size}")
|
49 |
|
|
|
|
|
|
|
|
|
50 |
for i in pbar:
|
51 |
with torch.no_grad():
|
52 |
diffuser.set_scheduler_timesteps(nsteps)
|
@@ -55,14 +62,15 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
55 |
iteration = torch.randint(1, nsteps - 1, (1,)).item()
|
56 |
latents = diffuser.get_initial_latents(1, width=img_size, height=img_size, n_prompts=1)
|
57 |
|
58 |
-
with
|
59 |
latents_steps, _ = diffuser.diffusion(
|
60 |
latents,
|
61 |
positive_text_embeddings,
|
62 |
start_iteration=0,
|
63 |
end_iteration=iteration,
|
64 |
guidance_scale=3,
|
65 |
-
show_progress=False
|
|
|
66 |
)
|
67 |
|
68 |
diffuser.set_scheduler_timesteps(1000)
|
@@ -82,7 +90,7 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
82 |
# loss = criteria(e_n, e_0) works the best try 5000 epochs
|
83 |
loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
|
84 |
memory_efficiency_wrapper.step(optimizer, loss)
|
85 |
-
optimizer.
|
86 |
|
87 |
torch.save(finetuner.state_dict(), save_path)
|
88 |
|
@@ -104,5 +112,11 @@ if __name__ == '__main__':
|
|
104 |
parser.add_argument('--iterations', type=int, required=True)
|
105 |
parser.add_argument('--lr', type=float, required=True)
|
106 |
parser.add_argument('--negative_guidance', type=float, required=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
train(**vars(parser.parse_args()))
|
|
|
1 |
+
from random import random
|
2 |
+
|
3 |
+
from accelerate.utils import set_seed
|
4 |
from torch.cuda.amp import autocast
|
5 |
|
6 |
from StableDiffuser import StableDiffuser
|
|
|
12 |
|
13 |
|
14 |
def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations, negative_guidance, lr, save_path,
|
15 |
+
use_adamw8bit=True, use_xformers=True, use_amp=True, use_gradient_checkpointing=False, seed=-1):
|
16 |
|
17 |
nsteps = 50
|
18 |
diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=repo_id_or_path).to('cuda')
|
|
|
50 |
|
51 |
print(f"using img_size of {img_size}")
|
52 |
|
53 |
+
if seed == -1:
|
54 |
+
seed = random.randint(0, 2 ** 30)
|
55 |
+
set_seed(seed)
|
56 |
+
|
57 |
for i in pbar:
|
58 |
with torch.no_grad():
|
59 |
diffuser.set_scheduler_timesteps(nsteps)
|
|
|
62 |
iteration = torch.randint(1, nsteps - 1, (1,)).item()
|
63 |
latents = diffuser.get_initial_latents(1, width=img_size, height=img_size, n_prompts=1)
|
64 |
|
65 |
+
with finetuner:
|
66 |
latents_steps, _ = diffuser.diffusion(
|
67 |
latents,
|
68 |
positive_text_embeddings,
|
69 |
start_iteration=0,
|
70 |
end_iteration=iteration,
|
71 |
guidance_scale=3,
|
72 |
+
show_progress=False,
|
73 |
+
use_amp=use_amp
|
74 |
)
|
75 |
|
76 |
diffuser.set_scheduler_timesteps(1000)
|
|
|
90 |
# loss = criteria(e_n, e_0) works the best try 5000 epochs
|
91 |
loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
|
92 |
memory_efficiency_wrapper.step(optimizer, loss)
|
93 |
+
optimizer.zero_grad()
|
94 |
|
95 |
torch.save(finetuner.state_dict(), save_path)
|
96 |
|
|
|
112 |
parser.add_argument('--iterations', type=int, required=True)
|
113 |
parser.add_argument('--lr', type=float, required=True)
|
114 |
parser.add_argument('--negative_guidance', type=float, required=True)
|
115 |
+
parser.add_argument('--seed', type=int, required=False, default=-1,
|
116 |
+
help='Training seed for reproducible results, or -1 to pick a random seed')
|
117 |
+
parser.add_argument('--use_adamw8bit', action='store_true')
|
118 |
+
parser.add_argument('--use_xformers', action='store_true')
|
119 |
+
parser.add_argument('--use_amp', action='store_true')
|
120 |
+
parser.add_argument('--use_gradient_checkpointing', action='store_true')
|
121 |
|
122 |
train(**vars(parser.parse_args()))
|