Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, Request | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel | |
from vllm import AsyncLLMEngine, SamplingParams | |
import asyncio | |
import json | |
app = FastAPI() | |
# Initialize the AsyncLLMEngine | |
# Replace 'your-model-path' with the actual path or name of your model | |
engine = AsyncLLMEngine.from_pretrained('microsoft/Phi-3-mini-4k-instruct') | |
class GenerationRequest(BaseModel): | |
prompt: str | |
max_tokens: int = 100 | |
temperature: float = 0.7 | |
async def generate_stream(prompt: str, max_tokens: int, temperature: float): | |
sampling_params = SamplingParams( | |
temperature=temperature, | |
max_tokens=max_tokens | |
) | |
async for output in engine.generate(prompt, sampling_params, True): # True enables streaming | |
yield f"data: {json.dumps({'text': output.outputs[0].text})}\n\n" | |
yield "data: [DONE]\n\n" | |
async def generate_text(request: Request): | |
try: | |
data = await request.json() | |
gen_request = GenerationRequest(**data) | |
return StreamingResponse( | |
generate_stream(gen_request.prompt, gen_request.max_tokens, gen_request.temperature), | |
media_type="text/event-stream" | |
) | |
except Exception as e: | |
return StreamingResponse( | |
iter([f"data: {json.dumps({'error': str(e)})}\n\n"]), | |
media_type="text/event-stream" | |
) | |